A B是n阶对称阵,证明AB是对称阵的充要条件是AB=BA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:01:54
A B是n阶对称阵,证明AB是对称阵的充要条件是AB=BA
设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵

证明:因为A实对称,所以存在正交矩阵U,使得U'AU=diag对角阵,对角线上是A的n个特征值.由题U'(AB+B'A)U与AB+B'A合同,也正定,其顺序主子式必定大于0.U'(AB+B'A)U=U

设A是n阶实对称矩阵 证明:A是半正定矩阵当且仅当对任意n阶半正定矩阵B都有tr(AB)大于等于

必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t

设A,B都是n阶矩阵,证明AB是对称矩阵的充分必要条件是AB=BA

AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB

设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零

因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0

N阶对称矩阵问题 A B是两个N阶对称矩阵 证明 AB+BA是对称矩阵 AB-BA是反对称矩阵

AB是两个N阶对称矩阵A^T=A,B^T=B(AB+BA)^T=(AB)^T+(BA)^T=B^TA^T+A^TB^T=AB+BA故AB+BA是对称矩阵同样(AB-BA)^T=(AB)^T-(BA)^

线性代数一道证明题下午一点补考...希望大哥们帮小弟解答一下...设矩阵A,B都是N阶对称阵.证明:AB是对称阵的充要条

先证充分性:即,如果已知AB=BA,证明AB是对称阵.(AB)^T=(B^T)(A^T)(^T代表上标,下同)因为矩阵A,B都是N阶对称阵所以B^T=B,A^T=A所以(AB)^T=(B^T)(A^T

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

证明:若A和B都是n阶对称矩阵,则AB是对称矩阵的充要条件是A与B可交换

经济数学团队为你解答,有不清楚请追问.请及时评价.

已知A是一个n阶对称矩阵,B是一个n阶反对称矩阵,证明AB-BA是一个对称矩阵,AB+BA是一个反对称矩阵

首先要知道对称矩阵和反对称矩阵的定义,对称举证,就是A的转置等于A;反对称矩阵就是B的转置等于-B,由于证明过程要用到高等数学证明符号,我把证明过程的截图发给你吧,证明过程的截屏你可以放大看:

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

如果A和B都是n阶是对称矩阵,并且有相同的特征多项式,证明AB相似.

由于A与B有相同的特征多项式,所以A与B有相同的特征根,不妨设λ1,λ2.λn为A与B的特征根,由于A与B均为实对称矩阵,则存在正交矩阵X和Y,使X^(-1)AX=【λ1λ2·····λn】(此为矩阵

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

设,AB均为n阶的对称矩阵,证明:AB为对称矩阵的充要条件是 A与B可交换

证明:因为A,B均为n阶的对称矩阵,所以A'=A,B'=BAB为对称矩阵(AB)'=ABB'A'=ABBA=AB即A与B可交换

设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB=BA

这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

线性代数设A与B是两个n阶对称行列式,证明:当且仅当A与B可交换时,AB是对称的.课本上先证明了A与B可交换时,AB是对

当且仅当是充分必要的意思,即两个结论可互推既在证明:A与B可交换时,AB是对称的又要证明:AB是对称时,A与B可交换

设A,B为N阶对称阵 证明AB为对称阵的充要条件为AB=BA

证明:必要性已知AB为对称阵转置(AB)'=B'A'又A'=AB'=B(AB)'=AB所以有AB=BA充分性已知AB=BA(AB)'=(BA)'=A'B'又A'=AB'=B所以(AB)'=ABAB为对

设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA

证明:若AB为反对称矩阵,则(AB)T=-AB=(-1)AB,已知A为n阶对称矩阵,则A=AT,B是n阶反对称矩阵,则BT=-B,而根据转置矩阵的重要性质(AB)T=BTAT=-BA=(-1)BA,(