已知电荷线密度为a的无限长均匀带电直线附近的电场强度为E=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:09:39
高斯定理,先考虑某一根导线产生的电场以某一根导线为圆心作高为h,半径为2a的圆柱面对称性可以知道电场只能垂直于侧面因此高斯定理:E*2*pi*2a*h=h*λE=λ/(4*pi*a)那么单位长度的令一
这里不好书写,帮你找到了一个地址:这里边的例题8-7,具体解答了你的题目,只不过它的电荷线密度字母不是用a表示.
使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ
点电荷q在距离它r处的电势u=kq/r,k=1/(4πε),ε是真空介电常数.半圆环上任一线元dl上的电荷λdl都相当于一个点电荷,它在圆心处的电势dU=k(λdl)/R.半圆上所有线元上的电电荷都产
带点导体球壳的电势和内径无关,它的表面的电势是U=kq/R2,所以球外距离球心r处的场强就是Er=kq/r^2=UR2/r^2
选两柱之间的半径为r处的无限圆筒为高斯面由对称性知电场仅有径向分量E_r取长为L的一段高斯面高斯面面积为2*pi*r*L内部电荷为Q=a*LE*2*pi*r*L=a*L得E=a/(2*pi*r)
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
真空中无限长的均匀带电直线的电场强度E=λ/2πεox﹢λ在P1处的场强为λ/2πεod方向沿x轴正方向﹣λ在P1处的场强为λ/2πεod方向沿x轴正方向则叠加后Ep1=λ/2πεod+λ/2πεod
2πrhE=λh/ε.因此高斯面上任意一点的电场强度的大小为E=λ/(2πε.r)
可以采用高斯定理,作一个以直导线为轴心,底面半径为R,高为L的圆柱封闭面,E×2πRL=ρL/ε.所以E=ρ/(2πRε.)
物理书上有无限长的带电导线在线外任意一点产生的场强的公式,自己看吧那个东西实在不好打
外磁场为零,内磁场为B_r=1/2μ_0pw(R^2-r^2),其方方向与角速度方向相同.其中R为圆柱半径,B_r为距离轴线距离为r处的磁场的强度.
采用高斯定理,建立坐标积分求解.(电势和场强).问题是求什么?求相互作用力,还是场强?或者电势?
电荷线密度为入的无限长均匀带电直线外的场强为E=2k入/rr1和r2的两点之间的电势差设为UdU=Edr=2k入dr/r=2k入lnrU=2k入[(lnr1)-(lnr2)]=2k入ln(r1/r2)
如果电荷密度为p则E=p/2e0,其中e0为介电常数,与距离无关这个要用高斯定律或者微积分推导
先用高斯定理求出电场分布,再积分得到电势.圆柱体内电场pr/2e,外电场pR^2/2re,e这里是真空介电常数.外电势-(pR^2)(lnr)/(2e),内电势[-(pR^2)(lnr)/(2e)]+
这里可以用高斯定理.首先确定那一条线肯定在这两根线的平面,对两根线做高斯圆柱面,圆柱高h,底面半径是R,x的那条由高斯定理得到E*2πRh=xh/ε则任一点由x产生的场强是Ex=x/(2πRε)同理y
E1=λ1/(2π*ε0R1),E2=λ2/(2π*ε0R2),E1-E2=λ1/(2π*ε0R1)-λ2/(2π*ε0R2)=0;R1+R2=d,解得:R1=λ1d/(λ1+λ2)