已知点p是直角三角形abc的斜边ab上的一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:47:41
(1)因为在直角三角形ABC中,角C=90度,AC=4,BC=3,所以AB=5,三角形ABC的面积=3乘4除以2=6,因为AD平分角CAB,所以CD/BD=AC/AB,即:CD/(3--CD)=4/5
因为PO垂直于平面ABC,所以OA=OB=OC=根号下(PA平方-PO平方)=根号下(PB平方-PO平方)=根号下(PC平方-PO平方)所以O是三角形ABC的外心.
(1)角A=90°,A在上,B在左因为:△ABC是等腰直角三角形角A=90°,PE垂直AB,PF垂直AC所以:角PEA=角PFA=90°故:四边形AEPF是矩形AE=PF在△PCF中因为:角PFC=9
连接AP,因为△BAC为等腰直角三角形所以BP=AP,角PBE=角PAF=45度又因为角BPA=角EPF=90度所以角BPA-角EPA=角EPF-角EPA所以角BPE=角APF,加上BP=AP,角PB
题目应该是“且点P在AC上”吧?再问:嗯,就是且点P在AC上过程怎么做呀再答:连接BP∵EF,GH分别为AB,BC的垂直平分线∴AP=BP,BP=CP∴AP=CP,即P为AC的中点∴BP为AC边上的中
因为角PMQ=角ACB=90度所以四边形PCQM为矩形,而M为AB中点,所以PMMQ分别为BCAC的中位线.所以CQ=BQ=PM,AP=PC=QM,即AP平分+BQ平方=PQ平方(直接三角形2边平方和
135°∵直角三角形ABC∴∠C=90°∴∠BAC+∠CBA=90°∵AD平分∠BAC∴∠CAD=∠BAD=1\2∠CAB∵BE平分∠CBA∴∠CBE=∠ABE=1\2∠CBA∴∠DAB+∠EBA=1
取BC中点D,连接OD,PD∵PB=PC,D为BC中点∴PD⊥BC∵O为AB中点,D为BC中点∴OD‖AC而AC⊥BC,故OD⊥BC,即PD⊥BC,OD⊥BC,所以BC⊥平面POD(定理:如果一条直线
已知ABC是等腰直角三角形,AC是斜边设AB=BC=a因为角A=角C=45度,cos45度=√2所以,PB^2=BC^2+PC^2-√2*a*PCPB^2=AB^2+PA^2-√2*a*PA于是2*P
这个很简单的啊,\x0d∵CP⊥AB\x0d∴∠CPA=∠BPA=90度\x0d∵△CBA是等腰直角三角形\x0d∴∠B=∠A=45度\x0d∵△CPA和△CPB都是直角三角形\x0d∴∠B=∠BCP
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
△DEF是以EF为底边的等腰直角三角形.[证法一]不失一般性,设点P在BD上.∵BC是等腰直角三角形ABC的底边,∴AB=AC,又BD=CD,∴AD⊥PD,而PE⊥AE,∴A、E、P、D共圆,∴∠PA
∵AC⊥BC,∴P点与C点重合∴AP+BP+CP=b+a+0=√7又:b²+a²=c²===>(a+b)²-2ab=c²===>7-2ab=4===>
你的辅助线证明你的思路是对的.PQ⊥AB利用PAB边长关系写出PQ²然后证明PQ²+CQ²=PC²(CQ=1/2AB)PCQ为直角三角形,PQ⊥QCPQC为两平
如图已知P的速度为1,则是将为t时,CP=t那么,BP=4-t由勾股定理得到:AP=√(t²+16)因为Rt△BDP∽Rt△ACP则,BP/AP=BD/AC===>(4-t)/√(t&
赞同:此题D必须是AB中点,否则不会有此结论,条件少了!你可以过D作BC,AC的平行线交出两小直角三角形,此两三角形相似,而DE,DG分别是两三角形的斜边.所以必有上述结论.
过C作AB垂线,垂足为M因为三角形ACB为等腰直角三角形所以AM=BM=CM=1/2AB因为DE⊥AB所以角DEP=角CMP角EDB=角B=45因为CP=PD所以角PCD=角PDC所以角CPB=45+
1.过M做MQ垂直于AC 只需证三角形PMQ全等于三角形PBN2.
证明:连接PB,∵在△ABC中,AB、BC的垂直平分线EF、GH相交于点P,∴PA=PB,PB=PC,∴∠A=∠ABP,∠C=∠CBP,∵∠A+∠ABP+∠CBP+∠C=180°,∴∠ABC=∠ABP