已知点P是圆(x y)^2 y^2=1任意一点,求x-2y的最大值和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:10:44
圆x^2+y^2-4x-4y+4=0即(x-2)^2+(y-2)^2=4圆心C(2,2),半径r=2设P(m,n),M(x,y),又A(10,0)P在圆上,则(m-2)^2+(n-2)^2=4(#)因
已知点P(x,y),且xy=0则P点在坐标轴上xy=0∴x=0或y=0
如图,当⊙P与坐标轴相交时,若与y轴相交时,根据函数图象得:0<x<1或-1<x<0;若与x轴相交时,根据函数图象得x<-2或x>2.
x2+y2=2y化成标准方程x²+(y-1)²=1,圆心C(0,1),半径为1设y/(x+2)=k得直线l:kx-y+2k=0∴l与圆x²+(y-1)²=1有公
x^2+(y-1)^2=1所以可以设x=sina,y=1+cosa所以2x+y=2sina+1+cosa=√5*sin(a+b)+1其中b满足cosb=2/√5,sinb=1/√5因为-1
由x^2+y^2=2y====>x^2+(y-1)^2=1;知该函数是一个圆的标准方程,圆心为O(0,1),半径为R=1;所以由图像就会知,x的取值范围为(-1,1);所以2x的取值范围就为(-2,2
点(x,y)在圆x²+y²=1上,设x=sinw,y=cosw,则:x+2y=sinw+2cosw则:x+2y的最大值是√5
x^2+y^2-6x-4y+12=0(x-3)^2+(y-2)^2=1令x-3=cosa,y-2=sinax+y=5+cosa+sina=5+√2sin(a+π/4)x+y最大值5+√2,最小值5-√
又是你专解零回答已知点A(0,3)B(4,0)P(x,y)是直线AB上的点,求xy的最大值设直线AB的方程为:y=kx+bA(0,3)x=0,y=3,b=3B(4,0)x=4,y=0,k=-3/4直线
设Q(u,v),则u=x+yv=xy∵x2+y2=1,∴u2-2v=x2+y2=1.∴点Q的轨迹是抛物线.故选B
(-1,4)(-1,3)(-1,2)(-1,1)(-2,2)(-2,1)共6个再问:正确怎么做丫?再答:你画个图啊那就容易看出来了
这个算较简单的题了...这种题的做法几乎都定型了,第一个问就是转了个弯告诉你在满足x,y的条件下求x-2y在y轴上最大/最小截距.(因为x,y在圆上,第一时间想到切线.或者用数形结合方法助于理解)第二
R=1圆心(-2,0)到直线的距离为:L=最短距离为R-L;最长距离R+L(2)就是圆上的点与点(1,2)连成的线段的最大和最小斜率
-t是截距的意思,当相切时就是极限点,-t分别可取到最大值和最小值,那么x-y的最值也就知道了再问:极限点是什么意思,,,,点C(3,2)到直线x-y-t=0的距离是什么意思再答:就是取最值的时候,就
点P在直线y=x上 点到圆上一点的距离,最小和最大都在点与圆心的连线上,靠近点P的为最近点,圆心另一端的为最远点. 因此,当PN最大而PM最小时,|pn| -
令yx=k,则y=kx,当直线y=kx与圆(x-3)2+(y-3)2=6相切时,k有最值即:|3k−3|1+k2=6,解得3±2故yx的最大值是3+2故答案为:3+2.
1、过点P垂直于切线的方程是Y=(根号3)X.则所求的切线的斜率为(-根号3)分之1,并且过点P.代入方程就可以求出来了.2..第二题不做了,估计三年了姐姐也做不出来了,而且手上没有纸笔.把每个条件都
∵P=x2+2xy+2y2+2x+4y+5=(x2+2xy+y2+2x+2y+1)+(y2+2y+1)+3=(x+y+1)2+(y+1)2+3≥3.∴P=x2+2xy+2y2+2x+4y+5的值恒为正
设p坐标为(x,y),A坐标为(2x-8,2y)满足(2x-8)^2+4y^2=16轨迹方程(x-4)^2+y^2=4再问:请问为什么A点坐标会是(2x-8,2y)????
你这点写的有问题,那个是横坐标,那个是纵坐标,另外a又什么量,已知的?