已知点P是三角形ABC内一点,连接PA,PB,PC,把三角形ABC的面积三等分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:13:36
已知点P是三角形ABC内一点,连接PA,PB,PC,把三角形ABC的面积三等分
已知P是三角形ABC所在平面内一点,若向量CB=γ向量PA+向量PB ,γ属于R,则点P 一定在

向量CB=γ向量PA+向量PB,γ属于RCB+BP=yPA,即CP=yPA.A,C,P共线.选B

如图所示,点P是三角形ABC内的任意一点,求证:AB+AC>BP+PC

过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P

已知p是三角形abc内任意一点,试说明pa+pb小于ac+bc

如图所示,延长AP交BC于点E.根据三角形两边之和大于第三边有:     AC+CD>AP+PD    

点P是三角形ABC内任意一点,试说明PB+PC

PB再问:有没有更详细的再答:这个没法详细证明,只要点P是在三角形内的任意一点,它始终是比三角形的两条边短啊再答:相反的,如果点P是在三角形外的任意一点,就比那两条边长再问:那这么说这是公式了再问:太

已知P是三角形ABC所在平面内的一点,若CB向量=入PA向量+PB向量,入属于R,则点P一定在哪?..

由CB向量=λPA向量+PB向量得CB向量-PB向量=λPA向量,即CP向量=λPA向量,那么点P一定在直线AC上.

如图,已知△abc是正三角形,p为三角形内一点,且PA=3

可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

已知 P 是三角形ABC内任意一点 求证AB+BC+CA大于PA+PB+PC

先证AB+BC大于AP+PC这个只要延长AP交BC于D然后AB+BD大于AP+PDPD+DC大于PC这两个相加,AB+BD+DC大于AP+PC也就是AB+BC大于AP+PC然后把ABC换两次,就得到了

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

已知,P是三角形ABC内的一点,连接PB,PC.求证

楼主妹妹,这个问题是不是也打算提两遍呀?证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A

已知:P是三角形ABC内任意一点,求证AB+AC>BP+PC

过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P

已知P是三角形ABC内一点,求证:PA+PB+PC>1/2(AB+BC+CA)

PA+PB>ABPA+PC>ACPB+PC>BC三式相加得2PA+2PB+2PC>AB+BC+CAPA+PB+PC>1/2(AB+BC+CA)

点P是三角形ABC内一点,试说明AB+AC>PB+PC.

延长BP交AC于点E,在△BAE中,AB+AE>BE,即AB+AE>BP+PE ①在△PCE中,CE+PE>PC,②①+②,得,AB+AE+CE+PE>BE+BP+P

已知P是三角形ABC所在平面内一点,且向量PA+向量PB+向量PC=向量AB,则点P为什么在AC边上?

向量PA+向量PB+向量PC=向量AB向量PA+向量PC=向量AB-向量PB=向量AB+向量BP=向量AP2向量PA+向量PC=0可见p在AC上

已知P是三角形ABC内一点,求证:AP+BP+CP>0.5(AB+BC+CA).

根据三角形两边之和大于第三边定理可得AP+BP>ABBP+CP>BCCP+AP>AC所以2(AP+BP+CP)>AB+BC+CA即AP+BP+CP>0.5(AB+BC+CA).

已知P是三角形ABC内一点,连BP,CP.

作辅助线,延长bp到ac,相交点为rab+ar>brcr+pr>cp然后相加ab+ar+cr+pr>br+cp由于ac=ar+crbr=bp+pr带入上不等式所以ab+ac>bp+cp

已知三角形ABC中,点P是三角形ABC内的一点,连接BP,CP.试说明:角BPC=角ABP+角APC+角A

 你这个结果是不可能的(是不是题目抄错了,应该是:角BPC=角ABP+角ACP+角A).如图,在△BPC中,角BPC=180°-(角PBC+角PCB)在△ABC中,角B +&nbs