已知点P是△ABC内的一点连接BP.CP
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:02:54
角A+∠ABC+∠ACB=180∠P+∠PBC+∠PCB=180又∠ABC>∠PBC∠ACB>∠PCB所以∠A<∠P
1)相等∵等边△ABC∴AB=BC,∠ABC=60°∵∠PBQ=60°∴∠ABP=∠CBQ∵BP=BQ∴△ABQ≌△CBQ∴AP=CQ2)直角三角形证明:∵∠PBQ=60°,BP=BQ∴△BPQ是等边
由塞瓦定理有,AF/FB*BD/DC*CE/EA=1所以,用反证法容易证明,AF/FB,BD/DC,CE/EA中,必有一个不小于1,又必有一个不大于1.
已知ABC是等腰直角三角形,AC是斜边设AB=BC=a因为角A=角C=45度,cos45度=√2所以,PB^2=BC^2+PC^2-√2*a*PCPB^2=AB^2+PA^2-√2*a*PA于是2*P
两边之差小于第三边
在△PCD中,∠1=∠2+∠PCD,∴∠1>∠2.故答案为:∠1>∠2.
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d[标签:papb,正方形,abcd]二、如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d1.将△PAB绕点B顺时
楼主妹妹,这个问题是不是也打算提两遍呀?证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A
∵∠BPC=∠PDC+DCP∴∠BPC>∠PDC∵∠PDC=∠A+∠ABD∴∠PDC>∠A∴∠BPC>∠A
连接AP 明显地 PB<AB PC<AC PB+PC<AB+AC
∵∠qap=∠bac,∠pab=∠pab∴∠qab=∠pac∵qa=pa,∠qab=∠pac,ab=ac∴△qab=△pac∴bq=cp
(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=π/4(a^2-b^2);(2)连接PP′,根据旋
把ΔPAB绕B旋转,使AB与AC重合,P点落在P',连PP'.易得等腰直角三角形PBP',PP'=4√2,∠PP'C=90,PC^2=(4√2)^2+2^2,PC=6
证明:连接并延长AP,交BC与点D∵∠BPD是△ABP的一个外角【已知】∴∠BPD=∠BAP+∠ABP【外角等于不相邻的两个内角和】∵∠CPD是△ACP的一个外角【已知】∴∠CPD=∠BAP+∠ABP
CB=PB-PC=kPA+PBPC=kPAP一定在AC上
你这个结果是不可能的(是不是题目抄错了,应该是:角BPC=角ABP+角ACP+角A).如图,在△BPC中,角BPC=180°-(角PBC+角PCB)在△ABC中,角B +&nbs
连接AP并延长,交BC于点E∵∠BPE>∠BAE,∠CPE>∠CAP(三角形的外角大于和他不相邻的内角)∴∠BPE+∠CPE>∠BAP+∠CAP即∠BPC>∠BAC
解题思路:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP\'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积
太简单了连接AP交BC与点D则∠BPC=∠BPD+∠CPD∠A=∠BAD+∠CAD由于∠BPD>∠BAD∠CPD>∠CAD则得证再问:详细点再答:哪里不懂再问:为什么∠BPD>∠BAD,∠CPD>∠C