已知点p(6,y)在抛物线y的平方等于2px,若点p
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:08:56
同学这道题是这样做的,你要明白抛物线的定义哦.1,因为y^2=2x,所以焦点为(1/2,0)将x=2带入方程得p点坐标为(2,1).所以p点到焦点的距离为根号(1^2+3/2^2)=根号13/22,由
先设一方程x+y+a=0与y^2=2x联立方程组,得x^2+2ax+a^2=2x令(b^2-4ac)=0得a=1/2此时直线x+y+1/2=0与抛物线相切所以直线x+y+5=0与x+y+1/2=0之间
答:抛物线上的点到焦点的距离等于其到准线的距离,当点P和点Q的所在直线PQ垂直于准线(或者说平行于x轴)时,所求距离之和取得最小值.抛物线y^2=4x的焦点F(1,0),准线方程x=-1所以最小距离为
根据抛物线的定义,抛物线x^2=4y准线y=-1点P到F的距离等于P到准线的距离因此,当PA垂直于准线时,PA+PF的最小值=3-(-1)=4再问:那此时P的坐标是什么呢?再答:P的横坐标是2,因此纵
抛物线为x^2=4y焦点与圆心重合,直线斜率不存在时与抛物线只有一个交点,舍k存在,设直线y-1=kx设A(x1,y1),B(x2,y2)利用抛物线定义,到焦点距离=到准线距离,所以AG=y1+1,圆
点P(6,y)在抛物线y^2=2px(p>0)上,准线为l:x=-p/2,P到焦点的距离等于P到准线的距离∵PF=8∴6-(-p/2)=8∴p=4∴F到准线距离为p=4
把斜率为k的直线方程表示出来,然后联立这个方程和抛物线方程,消去y,获得一个关于x的一元二次方程,这个方程的一个根是1(因为直线与抛物线的一个交点已经是P,方程的一个根就是这个点P的横坐标)由韦达定理
x^2=2*4y,p=4,焦点坐标F(0,2),找出A点关于Y轴的对称点为B(2,4),连结BF,交抛物线于P,取第二象限交点,即为所求,直线BF方程为:(y-2)/(x-0)=(4-2)/(2-0)
由于是抛物线,所以抛物线上一点到焦点的距离等遇到准线的距离|PF|就等于P点到准线的距离,准线x=-1,P点的恒坐标是2,所以|PF|为3再问:准线是怎么计算出来的,谢谢再答:圆锥曲线有第二定义,准线
抛物线y^2=2x的焦点为F(1/2,0)./PA/+/PM/=/PA/+d-1/2=/PA/+/PF/-1/2.当A、P、F三点共线时,/PA/+/PF/最小.直线AF的斜率为:k=4/(3.5-0
(1)抛物线与y轴交点为(0,9),所以b=9直线方程为y=-x+9与抛物线方程联立,解得x=0,5所以交点A为(5,4)(2)P点坐标为(3,0),到直线y=-x+9的距离为3√2AB长度为5√2所
容易知道,焦点F(1,0),设Q为(m,n),由于Q是FP的中点,得P(2m-1,2n)∵P在抛物线y²=4x上∴(2n)²=4(2m-1)4n²=4(2m-1)n&su
1A=A*M方M方=1M=1M=-1(舍去)2Y=KX+2A=AX方AX方-KX-2A=0X=1是其一个解则A-K-2A=0A=-KP(1,A)A(-2A/K,0)即(2,0)若∠OPA=90度则1方
已知点P是抛物线y^2=4x上的动点,点Q在y轴上,且PQ垂直于y轴,A(2,3),则使PQ+PA取得最小值时的P点坐标是什么?解析:∵点P是抛物线y^2=4x上的动点,PQ垂直于y轴,A(2,3)设
若M到抛物线焦点的距离为6,则4+p/2=6p=4抛物线的方程为y²=2px=8x注:抛物线上点M﹙a,b﹚到抛物线焦点的距离为h=a+p/2此公式可由抛物线的定义推出﹙也就是到焦点距离等于
这是2012漳州中考题,原题共三问,本题的解答如下: 江苏吴云超解答 供参考!