已知点o是直线ab上一点,角coe等于90度,of是角aoe平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:54:56
已知点o是直线ab上一点,角coe等于90度,of是角aoe平分线
①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

已知AB是圆O的直径,C是圆O上的一点,连结AC,过点C作直线CD垂直AB交AB与点D,E是OB上的一点,直线

证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(

已知AB是圆O的直径,C是圆O上的一点,连结AC,过点C作直线CD垂直AB交AB与点D,E是OB上的一点,直线CE与与圆

延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠

已知AB是圆O直径,C是圆O上一点,连接AC,过点C作直线CD垂直AB于点D,E是AB上一点,直线CE与圆O交于点F..

/>延长CG,交圆O于点M∵AB⊥CD∴弧AC=弧AM∴∠ACG=∠F∵∠CAG=∠FAC∴△ACG∽△AFC∴AC²=AG*AF∵AG=2,GF=6∴AF=8∴AC²=2*8=1

已知在平面直角坐标系xOy中,o是坐标原点,已知A(2,1)B(﹣1,3)若直线AB上存在一点C,使得oc⊥ab,求c点

没问题呀,你再重新列列-3x+2y=0和3x-2y=0不是一样么,oc垂直ab和oc垂直ba也一样第二个式子是-3(y-1)=2(x-2),导完了就是答案内个

如图 点o是直线ab上的一点,过点O作射线OC.

(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当

已知:圆O的半径OA=5,弦AB=8,C是弦AB的中点,点P是射线AO上一点(与点A不重合),直线PC与射线BO交于点D

当P在⊙O上时,连接BP        …………………………………………(1分)   &n

已知点O是直线AB上一点,OC,OD是两条射线,且角AOC=角BOD,则角AOC与角BOD是对顶角吗

答:不一定是对顶角.如果,C,D分别在直线AB的两侧,此时,就是对顶角.如果,C,D分别在直线AB的同侧,此时,就不是对顶角.

如图,已知点O是直线AB上一点,角COE等于90°,OF是角AOE的平分线.

图一:(1)当点C,E,F在直线AB的同侧:简要说明:作∠BOE的角平分线OG;由已知OF平分∠AOE;可得∠FOG=90;则:∠COE=∠COF+∠FOE=90=∠FOE+∠EOG,所以:∠COF=

如图,已知点O是直线AB上的一点,角COE=90度,OF是角AOE的平分线

分析:(1)设∠COF=α,则∠EOF=90°-α,根据角平分线性质求出∠AOF、∠AOC、推出∠BOE即可;(2)设∠AOC=β,求出∠AOF,推出∠COF、∠BOE、即可推出答案;(3)根据∠DO

1.如图已知AB是圆O的直径,C是圆O一点,连接AC,过点C做CD垂直AB于点D,E是AB上的一点,直线CE于圆O

在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC

已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.

⑴证明:∵OF是∠AOE的平分线∴∠AOF=∠FOE=½∠AOE∵∠COF+∠FOE=∠COE=90°∴∠FOE=90°-∠COF∵∠AOF+∠FOE+∠BOE=∠AOB=180°∴∠BOE