已知点O是△ABC内任意一点,连结OA并延长到E,使得AE=OA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:09:43
延长BP交AC于M,两次应用“三角形两边之和大于第三边”即可得证.再问:能说详细点么再答:AM+AB>BM=BP+PM,PM+MC>PC两式两边分别相加得AM+MC+AB>PB+PC,即AB+AC>P
证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,
AB+AC>OB+OC证明如下:延长BO交AC于E,则AB+AE>OB+OE又OE+CE>OC上边两式左右两边分别相加,得,AB+AC>OB+OC
已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的重心
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD
有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O
1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,
AD+BD>AB;AD+DC>AC;BD+DC>BC;三式相加得2(AD+BD+CD)>AB+BC+AC移项得答案
a(x1,y1,z1)b(x2,y2,z2)c(x3,y3,z3)g((x1+x2+x3)/3,(y1+yy2+y3)/3,(z1+z2+z3)/3)OA+OB+OC=λOG(x1+x2+x3,y1+
∵EF∥AC,∴△AOC∽△FOE∴OF/OA=OE/OC同理可得△ODE∽△OBC∴OE/OD=OD/OB∴OF/OA=OD/OB又∵∠BOA=∠BOA∴△OFD∽△OAB
1,连接AH.OBFC为平行四边形,点H为OF、BC中点.AB=AC 点H为BC中点 AH⊥BCAH=√3BC/2OA/OE=1/2OH/OF=1/2OA/OE=OH/OFAH//EFEF⊥BCAH
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所
△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD
AB+AC>BD+CD证明:延长CD交AB于E∵在△ACE中AC+AE>CE∴AC+AE>CD+DE∵在△BDE中BE+DE>BD∴AC+AE+BE+DE>CD+DE+BD∴AB+AC>BD+CD
证明:连接并延长AP,交BC与点D∵∠BPD是△ABP的一个外角【已知】∴∠BPD=∠BAP+∠ABP【外角等于不相邻的两个内角和】∵∠CPD是△ACP的一个外角【已知】∴∠CPD=∠BAP+∠ABP
CB=PB-PC=kPA+PBPC=kPAP一定在AC上
证明:∵G、F分别是AC、BC中点,∴GF∥AB,且GF=12AB,同理可得,DE∥AB,且DE=12AB,∴GF∥DE,且GF=DE,∴四边形GDEF是平行四边形.
证明:连接AO,并延长交BC于点D因为角BOD>角BAO,角COD>角CAO角BOC=角BOD+COD>BAO+CAO=角A得证再问:谢谢了哈再答:不用谢.
(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,