已知点O是△ABC内任意一点,连结OA并延长到E,使得AE=OA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:09:43
已知点O是△ABC内任意一点,连结OA并延长到E,使得AE=OA
已知:P是△ABC内任意一点,试说明AB + AC > BP +PC

延长BP交AC于M,两次应用“三角形两边之和大于第三边”即可得证.再问:能说详细点么再答:AM+AB>BM=BP+PM,PM+MC>PC两式两边分别相加得AM+MC+AB>PB+PC,即AB+AC>P

已知:三角形ABC,O是三角形ABC内任意一点.求证:AB+AC大于OB+OC

证明AB+BC>OB+OC证:延长BO交AC于D因为AB+AD>BD=OB+OD,即AB+AD>OB+OD,又因为OD+DC>OC上述两不等式两边相加得:所以AB+AD+OD+DC>OC+OB+OD,

点O为△ABC内任意一点,试比较AB+AC与OB+OC的大小,并说明理由

AB+AC>OB+OC证明如下:延长BO交AC于E,则AB+AE>OB+OE又OE+CE>OC上边两式左右两边分别相加,得,AB+AC>OB+OC

已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的

已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的重心

已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内

一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心

已知:O为三角形ABC内任意一点,

分析:构造出两个三角形,使之包含结论中的4条线段,可利用“三角形两边之和大于第三边”解决问题.延长BO交AC于D,则在△ABD中,AB+AD>OB+OD.在△ODC中,OD+DC>OC.所以AB+AD

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

已知o为三角形abc内任意一点,求证

1.bo+oc+bc<ab+ac+bc则bo+oc<ab+ac2.oa+ob大于aboa+oc大于acob+oc大于bc则三式加起来就是OA+OB+OC>½(AB+BC+AC)再问:麻烦你,

已知点D是△ABC内任意一点,连接DA,DB,DC,试说明DA+DB+DC>2分之1(AV+AC+BC).

AD+BD>AB;AD+DC>AC;BD+DC>BC;三式相加得2(AD+BD+CD)>AB+BC+AC移项得答案

一道空间向量的题目已知点G是△ABC的重心,O是空间内任意一点,若OA+OB+OC=λOG(都是向量,我打不出来),求λ

a(x1,y1,z1)b(x2,y2,z2)c(x3,y3,z3)g((x1+x2+x3)/3,(y1+yy2+y3)/3,(z1+z2+z3)/3)OA+OB+OC=λOG(x1+x2+x3,y1+

如图,已知点O为三角形ABC内任意一点,连结OA,OB,OC,在OC上任意取一点E,作EF//AC,交OA于点F,做DE

∵EF∥AC,∴△AOC∽△FOE∴OF/OA=OE/OC同理可得△ODE∽△OBC∴OE/OD=OD/OB∴OF/OA=OD/OB又∵∠BOA=∠BOA∴△OFD∽△OAB

已知点O是三角形ABC内任意一点,连接OA并延长到E,使得AE=OA 以OB,OC,为邻边作平行四边

1,连接AH.OBFC为平行四边形,点H为OF、BC中点.AB=AC 点H为BC中点  AH⊥BCAH=√3BC/2OA/OE=1/2OH/OF=1/2OA/OE=OH/OFAH//EFEF⊥BCAH

如图,点P是△ABC内任意一点,试说明PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所

已知如图o为三角形ABC内任意一点求证

△∠∵∴辅助线,连接AO并延长交BC于D;则∠BOC=∠BOD+∠COD,同样,∠BAC=∠BAD+∠CAD根据三角形外角和定理,∠BOD=∠BAD+∠1,∠COD=∠CAD+∠2∴∠BOC=∠BAD

如图所示,已知点D是△ABC内任意一点,连结BD、DC,试说明AB+AC>DB+DC

AB+AC>BD+CD证明:延长CD交AB于E∵在△ACE中AC+AE>CE∴AC+AE>CD+DE∵在△BDE中BE+DE>BD∴AC+AE+BE+DE>CD+DE+BD∴AB+AC>BD+CD

将本命题的证明过程补充完整.已知如图,点P是△ABC内任意一点,连接PB,PC.求证∠BPC>∠A

证明:连接并延长AP,交BC与点D∵∠BPD是△ABP的一个外角【已知】∴∠BPD=∠BAP+∠ABP【外角等于不相邻的两个内角和】∵∠CPD是△ACP的一个外角【已知】∴∠CPD=∠BAP+∠ABP

已知:点O是△ABC内任意一点,D,E,F,G分别是OA,OB,BC,AC的中点.

证明:∵G、F分别是AC、BC中点,∴GF∥AB,且GF=12AB,同理可得,DE∥AB,且DE=12AB,∴GF∥DE,且GF=DE,∴四边形GDEF是平行四边形.

已知点O是△ABC内一点,求证∠BOC>∠A

证明:连接AO,并延长交BC于点D因为角BOD>角BAO,角COD>角CAO角BOC=角BOD+COD>BAO+CAO=角A得证再问:谢谢了哈再答:不用谢.

已知O是三角形ABC内一点,求证.

(1)∵O是△ABC内一点,由∠BOC+∠OBC+∠OVB=180°,①又∠A+∠B+∠C=180°,②①-②得∠BOC=∠A+∠ABO+∠ACO,∴∠BOC>∠A.(2)过O作OM‖AC交AB于M,