已知点o为直线ab上一点角COD=90度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:11:22
已知点o为直线ab上一点角COD=90度
21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB.点p时圆O上异于A,B的任意一点,

21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1

如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE

设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70-x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70-x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+

重新: 如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC\OD\OE,且OC平分∠AOD,∠B

∵直线AB∴∠AOD+∠BOD=180∵OC平分∠AOD∴∠AOD=2∠COD∵∠BOE=3∠DOE∴∠BOD=∠BOE+∠DOE=4∠DOE∴2∠COD+4∠DOE=180∴2(∠COD+∠DOE)

如图,已知O为直线AB上一点,过点0向直线AB上方引三条射线OC,OD,OE,且OC平分角AOD,角2=3角1

已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,∠BOE=3∠DOE,∠COE=70°,求∠BOE的度数∵直线AB∴∠AOD+∠BOD=180∵OC平分∠A

如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,

∠2与∠1是哪个?有图吗?再问:再答:����ocƽ�֡�AOD��AOC��50º���AOD��2��AOC��100º�ߡ�AOB��180º���BOD��180

已知:如图,点O为直线AB上一点,过点O在直线AB的同侧作射线OD、OC、OE,且OD是∠AOC的平分线,∠DOE=90

OE是∠BOC的平分线.理由如下:∵OD是∠AOC的平分线,∴∠AOD=∠COD,又∠DOE=90°,∴∠COD+∠EOC=90°,∴∠AOD+∠EOB=90°,∴∠EOB=∠EOC,∴OE是∠BOC

已知,如图,A,C为圆O上的点,B为OC的延长线上的一点,且CA=CB=CO.求证:直线AB是圆O的切线

证明:∵CO=AC∴∠O=∠CAO∵CB=CA∴∠B=∠CAB∴∠O+∠B=∠CAO+∠CAB=∠OAB∵∠O+∠B+∠OAB=180º∴∠OAB=90º,即AB⊥OA∵OA是半径

如图,已知点O为直线AB上一点,OM、ON分别是∠AOC、∠BOC的平分线.求∠MON的度数.

/>因为:OM平分角AOC,所以:角AOM=角MOC因为:ON平分角BOC,所以:角CON=角BON所以:2角CON+2角MOC=180度,即:2角MON=180度所以:角MON=90度

①如图1,已知AB是圆O的直径,点C是圆O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线C

话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B

已知圆O,X²+y²=4,又圆O上一点A(2,0)过A点作一直线交圆O一点B,P为AB中点求点P的轨

假设点P坐标为(x0,y0),则点B坐标为(2x0-2,2y0)点B在圆O上,所以(2x0-2)^2+(2y0)^2=4(x0-1)^2+y0^2=1所以点P轨迹方程为(x-1)^2+y^2=1

已知AB是圆O直径,C是圆O上一点,连接AC,过点C作直线CD垂直AB于点D,E是AB上一点,直线CE与圆O交于点F..

/>延长CG,交圆O于点M∵AB⊥CD∴弧AC=弧AM∴∠ACG=∠F∵∠CAG=∠FAC∴△ACG∽△AFC∴AC²=AG*AF∵AG=2,GF=6∴AF=8∴AC²=2*8=1

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

如图,已知点C是圆O的直径AB上的一点,过点C作弦DE,使CD=CO,若弧BD的度数为10°,那么角BAE的度数?

连接DO,延长DO交圆于F,连接AE、BE、BF∵OB=OF∴∠OBF=∠OFB∴∠BOD=∠OBF+∠OFB=2∠OBF∵弧BD的度数为10∴∠BOD=10∴∠OBF=5∵CD=CO∴∠CDO=∠B

已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.

(1)直线BD与⊙O相切.证明:如图,连接OB.∵∠OCB=∠CBD+∠D,∠1=∠D,∴∠2=∠CBD,∵AB∥OC,∴∠2=∠A,∴∠A=∠CBD.∵OB=OC,∴∠BOC+2∠3=180°.∵∠

如图,已知AB为⊙O的直径,点C为半圆上的三等分点,在直径AB所在的直线上找一点P,连接CP交⊙O于点Q,使PQ=OQ,

①当P在直线AB延长线上时,如图所示:连接OC,设∠CPO=x°,∵PQ=OQ,∴∠OQP=∠CPO=x°,∴∠CQO=2x°,∵OQ=OC,∴∠OCQ=∠CQO=2x°,∵点C为半圆上的三等分点,∴

如图所示,O为直线AB上一点,

望采纳嘻嘻嘻60度首先∠boc是直角,∠bod:∠cod=4:1∠bod必须等于∠boc+∠cod即∠boc=3*∠cod=90°所以∠cod=30°所以∠bod=120°∠aod=180°-120°

已知:AB是圆O的直径,弦CD⊥AB于点G,E是直径AB上一点,直线DE交圆O于点F,

连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC