已知点m为△abc的边bc的中点.若ad为△abc的外角平分线,求md的长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:18:04
判断:EN与MF相等(或EN=MF),点F在直线NE上,理由如下:连接DE,DF,EF.∵△ABC是等边三角形,∴AB=AC=BC.又∵DE,DF,EF为三角形的中位线.∴DE=DF=EF,∠FDE=
证明:设AO与DE交于点N,∵DE//BC∴NE/BM=EO/BO=DE/BC=AE/AC=NE/CM故:BM=CM
(1)过点M作MF∥BC交AC于F,∴∠FMD=∠CND,∠MFD=∠NCD,∠AMF=∠B.∵△ABC为正三角形,∴∠A=∠B=60°,AB=AC=4.∴∠AMF=∠B=60.∴△AMF是等边三角形
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=
1、DF⊥AB于F,DE⊥AC于E,∠A=90°AEDF是矩形,DF=AE2、BC=6,BD=2,则AB=AC=3√2DF=BD*√2/2=√2,DE=CD*√2/2=2√2M是中点,M到AB的高AC
证明:连结AM∵∠BAC=90°,AB=AC,M是BC的中点∴AM=BM,∠BAM=∠CAM=45°,AM⊥BC∵DF⊥AB,DE⊥AC,∠BAC=90°∴四边形AFDE是矩形,∴DF=AE∵DF⊥A
D在题中没有作用连接AM∵△ABC是等腰直角三角形,M是BC的中点∴AM⊥BC,AM=BM=1/2BC∠MAE=∠MAC=∠B=45°∵BF=AE∴△BFM≌△AEM(SAS)∴FM=EM∠BMF=∠
作DH⊥BC于H在等边三角形中,∠B=∠MDN=60°,DM=DN∵∠B+∠BMD=∠MDN+∠ADN(三角形的一个外角等于不相邻两个内角之和)∴∠BMD=∠ADN∵∠DAN=∠DHM=90°∴⊿DA
(1)△abc中为等边三角形AB=BC,角ABM=角BCN=60°BM=CN所以三角形ABM全等于三角形BCN那么有角BAM=角CBN在三角形ABM中,有角BAM+角ABM+角BMA=180°在三角形
CN、MN、AM相等CA=CB,∠MON=60°,∠MON=∠A得CA=CB=AC,等边三角形AM=1/2AC=CN=1/2BC=MN=1/2AB,成立再问:不对吧,看图就知道不对,我把图发给你。不过
(1)当∠CMF=120°时,∵将△BOM沿直线MO翻折,点B落在点B1处,∴∠BMO=∠OMB1,∵∠CMF=120°,∴∠BMO=30°,∵AB=BC=4,点O为AB边的中点,∴BO=2,∴Rt△
(1)∵DF⊥AB,DE⊥AC,∠A=90°∴四边形AFDE是矩形,∴DF=AE(2)△MEF是等腰直角三角形证明:连结AM∵AB=AC,∠A=90°,∠B=45°又DF⊥AB,∴∠BDF=∠B=45
完整问题为在直角三角形ABC中,∠C=90°,AC=12,BC=16,点O为△ABC的内心,点M为斜边AB的中点,求OM的长过O作OD⊥AB于D设BD=x∵∠C=90°,AC=12,BC=16∴AB=
再问:为什么AD垂直于BC,BE垂直于AC,ME就=2分之1的AB?MD=2分之1AB?再答:△ADB和△ABE是直角三角形,M为AB边的中点,直角三角形斜边上的中线等于斜边的一半,这是定理啊。
不没有错延长EM然应该会拉吧
∵∠ADB=∠ANC=90°AD=CEAB=AC∴△ABD≡△CAN∴AN=BD∴DE=AN-AD=BD-CE
∠NAD=∠NAE,∠AND=∠ANE=90°∴△AND≌△ANE∴AD=AE∠ADE=∠E过C作CF‖AD交ED于F,则∠CFE=∠ADE=∠E∴CF=CE由BM=MC易证△MBD≌MCF∴BD=C
(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,(2)成立.证明:方法一:连结DE,DF.∵△ABC是等边三角形,∴AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角
(1)EN与MF相等(或EN=MF),点F在直线NE上,(2)成立.连DE,DF.△ABC是等边三角形AB=AC=BC.又∵D,E,F是三边的中点,∴DE,DF,EF为三角形的中位线.∴DE=DF=E
1)EN=MF,点F在直线NE上2)EN=MF成立连接DE,DF∵∠EDF=∠MDN=∠BDF=60°∴∠NDF=∠BMD∠EDN=∠MDF又,DE=DF,DN=DM∴△DEN≌△DFMEN=MF3)