已知点e是正方形abcd中的cd的中点,点F是CB的延长线上的一点,且DE=BF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:14:44
已知点e是正方形abcd中的cd的中点,点F是CB的延长线上的一点,且DE=BF
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

已知正方形ABCD的边长为1,点E是AB边上的动点,则DE•DC

以AB、AD所在直线为x轴、y轴,建立坐标系如图可得A(0,0),B(1,0),C(1,1),D(0,1)设E(x,0),其中0≤x≤1∵DE=(x,-1),DC=(1,0),∴DE•DC=x•1+(

已知四边形ABCD是边长为4的正方形,点E是AB的中点,GC垂直于ABCD所在的平面,且GC=2,求点C到平面GED的距

用等体积换底法.设点C到平面GED的距离为d,做EF垂直CD于F.四面体C-GED的体积=四面体E-GBC的体积.即d乘以三角形CDE的面积=EF乘以三角形GCD的面积.三角形CDE的面积=正方形AB

已知正方形ABCD的边长是1、E是CD边上的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A-B-C-D运

x∈[0,1]时,y=1/2xx∈(1,2]时,y=3/4-1/2(x-1)-1/4(2-x)x∈(2,2.5]时,y=1/2(5/2-x)把y=1/3分别代入三式,解得x=2/3

已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交A

(1)过点H作MN∥AB,分别交AD,BC于M,N两点,∵FP是线段AE的垂直平分线,∴AH=EH,∵MH∥DE,∴Rt△AHM∽Rt△AED,∴AMMD=AHHE=1,∴AM=MD,即点M是AD的中

如图,已知正方形ABCD的边长是1,E为CD的中点,P为正方形边上的一个动点,动点P从A出发沿A⇒B⇒C⇒E运动,最终到

由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<

求证明 已知,如图,正方形ABCD中,点E是BA延长线上一点,连接DE,点F在

连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<

如图10,已知正方形ABCD,直线AG分别交BD,CD于点E,F,交BC延长线于点G,点H是线段FG上的点,且HC垂直C

楼主没有给出题目的图,于是我根据题目叙述自己画了一张图,希望是对的.为了叙述方便我将图中一些角标号了.多年未解几何题了,解题语言肯定不规范了,楼主自行修改吧.思路:△CGF为直角三角形,我们知道直角三

已知点E在正方形ABCD中,三角形EBC是等边三角形,求角AED的度数.

易知角ABE=30度,AB=BE,所以角AEB=75度.同理角DEB=75度;又角BEC=60度,所以角AED=360度—角AEB—角DEB—角BEC角AED=150度

如图所示,点E是正方形ABCD内一点.

这个问题已经有很多的现成回答了啊,提示:将△CBE绕B点旋转90°,得△BE'A,连接EE'       135°

已知正方形ABCD内一点,E到A、B、C三点的距离之和的最小值为2+6

如图,设E到A点,B点,C点的距离之和的最小值为2+6.以B为旋转中心,把△AEB按逆时针方向旋转60°,得△FGB,连CF,∴△BEG是正三角形,∴BE=GE,∴AE+EB+CE=FG+GE+EC≥

如图①,已知正方形ABCD的边长为4cm.点E是AD的中点:动点P从点E处出发,以1cm|s的速度沿E→A→B→C运动,

1)在AB上,设s=kt+b由题意得:4=2k+b8=8k+b得:k=2/3b=8/3所以解析式就得出了.在BC上时设s1=k1t+b由题意得:0=10k+b,8=8k+b所以函数解析式求出来了.2)

已知:如图,正方形ABCD的边长是1,E是CD的中点,P为边BC上一个动点,动点P从点B出发,沿B-C-E运动,

由题意可知:当动点P从B运动到C时,S△APE=12×1×1=12,当动点P从C运动到E时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<

已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动

当动点P在A---B间运动时,如图(1) ∵ABCD是边长为1的正方形 ∴ △APE的高是1 而AP=x ,△APE的面积为y ∴ 

已知正方形ABCD的边长是2,E是CD中点,P为正方形ABCD上的一个动点,动点P从A出发,沿A,B,C,E运动,若P经

根据已知条件先解出AED三边长,用勾股定理.然后再利用相似三角形边长比例相等的关系,分别用不同的边的比值相等.列三个三元一次方程.解出来AEP三种答案,再讨论成立否.求X.不清楚了在问我.按这个先算算

已知:如图,在正方形ABCD中,点E是边CD上的动点(点E不与端点C、D重合),CD=mDE,AE的垂直平分线FP分别交

⑴⊿AHF∽∠ADE﹙AAA﹚.∴FH:AH=ED∶AD=1∶2⑵设DE=a,这AD=3a.AE=√10a,AH=√10a/2HP=3√10a/2FH=√10a/6容易证明FG=AE=√10a,∴GP

如图所示,四边形ABCD,CEFG是正方形,B,C,E在同一条直线上,点G在CD上,正方形ABCD的边长是4,则△BDF

设EF=a则S△BEF=0.5a(a+4)S梯形CEFD=0.5a(a+4)S△ABD=8△BDF的面积是S△BDF=S梯形CEFD+S□ABCD-S△BEF-S△ABD=8

已知:在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C、D重合),AE的垂直平分线FP分别交AD、A

1)过点G作GQ⊥AD于Q,则QG=AB=AD=12,∠FQG=∠D=90°∵∠QFG+∠DAE=∠AED+∠DAE=90°,∴∠QFG=∠AED∴△QFG≌△AED∴FG=EA,FQ=DE=m∵FP

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

已知ABCD是边长为4的正方形,点E时AB的中点,GC⊥面ABCD,GC=2,求(1)GE与CD所成角(2)点C到面GE

图,相信你会画的···bc=4be=2则ce=根号20则GE与CD所成角为arctan(2/根号20)=arctan五分之根号五点C到面GED的距离等于四面体bcde的体积除以三角形gde四面体bcd