已知正方形abcd的边长是12厘米阴影部分面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:12:50
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
解题思路:利用等腰三角形性质解题过程:见附件最终答案:略
连结AD,扇形ABD的面积为(π*8^2)/4=16π平方厘米≈50.27平方厘米三角形ABD的面积为(8^2)/2=32平方厘米于是阴影部分面积≈2*(50.27-32)=2*18.27=36.54
设AD中的交点为F,则FD/4=6/10,由此可得FD=2.4cm,于是AF=1.6cm,故所求面积为:1.6*4/2=3.2cm^2
连AD,阴影面积=2(扇形CAD面积-△ACD面积)=2(16π-32)=32π-64
我给你讲一下思路吧:首先,阴影三角形的各个边都可以根据勾股定理求出;求阴影部分的面积可以先求两个正方形的面积,再加上阴影覆盖超出正方形小三角形的面积,这再减去不被阴影覆盖的两个三角形的面积就是阴影部分
小正方形边长为4则GCEF中除去右下角阴影部分的1/4圆面积为(3.14*4*4)/4=12.56小正方形的面积为4*4=16小正方形右下角的阴影面积为16-12.56=3.44两个正方形面积之和为6
(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相
7×7÷2=49÷2=24.5(平方厘米)答:正方形EFGH的面积是24.5平方厘米.
如图,多面体分为三棱柱BCF-MNE(底面为BCF,高位EF)和四棱锥(底面AMND,高FH)体积=1/2BC*FH*EF+1/3AM*MN*FH=BC*FH(EF/2+AM/3)=3*2*(1/3+
没有图啊,...你就凑发着听吧嘻嘻证明:做ON垂直于BC,垂足为N,并延长N到园O至点M做OE垂直于CD,垂足为E,连接OC因为四边形ABCD为正方形所以四边形ONCE为正方形所以OC为正方形ONCE
楼主要自己画一下图啊,我以前画了好几次图上传的时候都不成功,浪费表情.其实画一下图就很明白了,数形结合是一种很重要的数学思想啊,尤其是几何,一定要多画图.因为AE平分∠BAC,EF⊥AC,所以BE=E
如图,,连接AC,根据DE是EC的长度的2倍,可知三角形ACE的面积是三角形ADC的面积的13;因为等底等高的两个三角形的面积相等,所以三角形ADC的面积和三角形ADF的面积相等,因此三角形DEF的面
【推荐方法:】其实,连接CF,因为∠BFP=45°,∠ANP=45°,所以PF∥AN,△ANB和△ANF同底等高,面积相等,等于大正方形面积的一半.12×12÷2=144÷2=72平方厘米小正方形的边
(1)四边形CDFP的周长=6,因为AF=FE,PE=PM,所以四边形周长即为AD+DC+CB=6.(2)连接OE、OF、OP,根据三角形AOF与三角形EOF全等、三角形EOP与三角形BOP全等可知,
不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4
角HDF为90度,角ADC为90度,可得角HDA=角CDF角AHD=角FCD=90度可得三角形ADH与三角形FDC相似AD/FD=DH/DC即5/FD=DH/5即FD*DH=25长方形面积即为25平方
取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。
10*10+12*12-10*10除以2-(10+12)*12除以2-(12-10)*12除以2=100+144-50-132-12=244-194=50(平方厘米)