已知正方形ABCD中,以BD为边做菱形BFED,且EFC共线,求J角E 的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:17:53
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
少条件,只能证明MNPQ是菱形,如果要证明还要有AC垂直于BD的条件证明:在空间四边形ABCD中,M,N,P,Q分别为AB,BC,CD,DA的中点则,MN、NP、PQ、QM分别是所在三角形的中位线所以
边长的平方+边长的平方=(2根号2)^2则边长=2则周长=2x4=8则面积=2x2=4再问:能详细点吗??
(1)连结OB,OC.易知OB=OC,∠BOC=90°,∠OBM=∠OCN=45°而∠EOG=90°∴∠BOM=∠BOC-∠EOC=∠EOG-∠EOC=∠CON∴△OBM≌△OCN(ASA)∴BM=C
证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB-∠E
(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=C
由题意得.S四边形abcd=5*5=25平方厘米;Sabd=nπr^2=90*25*π/360=6.25π平方厘米;所以S阴影=S四边形abcd-Sabd=25-6.25π平方厘米
如图,AD中点O即半圆的圆心,作辅助线,OE、OC、OF因为E在半圆上,所以OE=OD=2E也在四分之一圆上,所以EC=DC=4加上公共边OC马上我们就可以知道△ODE和△OCE是全等的直角三角形(S
设CE的长为x过E点向AC作垂线,设垂足为F则ABE与AFE全等.那么FE=BE=BC-CE=1,AF=AB=1于是CF=(根号2)-1根据CEF是直角三角形.CF的平方+EF的平方=CE的平方列方程
①⊿BEP等腰直角,AEPF为矩形,∴BE=EP=AF.又OA=OB.∠OAF=∠OBE=45º∴⊿OAF≌⊿OBE(SAS),∴OF=OE.∠FOA=∠EOP②∠FOE=∠FOA+∠AOE
如图.敢问图在哪儿.如图,可知S阴影=S扇形BAD+S扇形BCD-S正方形ABCD =1/4·π×4²+1/4·π×4²-
图在哪证明:延长CB到M,使BM=DF,连接AM.∵AB=AD,∠ABM=∠D=90°∴△ABM≌△ADF(SAS)∴AM=AF,∠BAM=∠DAF.∴∠BAM+∠BAE=∠DAF+∠BAE=∠DAB
等边三角形ABE则AB=EB=BC则三角形EBC是等腰三角形且∠ABC=90∠EBA=60则∠EBC=150则∠BCE=∠CEB=15△AGB与△BGC中AB=BCBG=BG∠ABG=∠GBC则△AG
∵四边形ABCD是正方形,∴AB=BC=AD=CD,∠ABC=90°,∠ADG=∠CDG,∠ABD=45°,∵GD=GD,∴△ADG≌△CDG,∴∠AGD=∠CGD,∵∠CGD=∠EGB,∴∠AGD=
解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略
解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证
设AO=a,则a2=12.阴影部分的面积为:π a2−1=12π−1=12×3.14-1=0.57.答:图中阴影部分的面积为0.57.故答案为:0.57.
勾股定理:x的平方+x的平方=12的平方得X=6倍根号2,过P点分别作PM垂直于BD,PN垂直于AC,M,N分别在BD,AC上.用角角定理得:三角形ANP相似于三角形ABC;三角形BMP相似于BAD三
32划两条对角线,分正方形为4个等腰直角三角形.可拼成2个边长为4的正方形.大正方形的面积=2*4*4=32
证明:(1)连AC,AP,AD=CD∠ADP=∠CDP=45°DP=DP⇒△ADP≅△CDP⇒PA=PC⇒∠PAC=∠PCAEA=PE⇒∠E