已知正方形ABCD中,E为对角线BD上一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:23:37
已知正方形ABCD中,E为对角线BD上一点
如图,已知正方形ABCD的面积为64,△ABE是等边三角形,且点E在正方形ABCD内.

正方形ABCD的面积为64∴边长=8以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP&

如图,已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥平面ABCD,E为PC中点.求

∵平面PDC⊥平面ABCDCD为交线BC⊥交线CD∴BC⊥面PDC∵DE属于面PDC∴BC⊥DE∵△PDC为正三角形E为PC中点∴DE⊥CE∵CE交BC于点C∴DE⊥面BCE∴DE⊥BE∴∠BEC即为

已知四棱锥P-ABCD中,面ABCD为正方形,PA⊥面ABCD

如图,O为四边形ABCD对角线交点 过NE‖AB,交BC于N,交AD于E 连MN 易知: MN‖PB(M为PC中点,N为BC中点,MN为△PBC中位线)&nbs

正方形ABCD,边长为4,E是AB边上的一点,AE为3,P是对角线上的移动点,问PE+PB的最小值是多少

因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别

分析:(I)由题意AD⊥CD,PD⊥CD,可得CD⊥平面PAD,因为EF∥CD,证明EF⊥平面PAD,(II)CD∥EF,所以CD∥平面EFG,故CD上的点M到平面EFG的距离等于D到平面EFG的距离

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别

有不明白的可以追问!如果您认可我的回答.请点击下面的【选为满意回答】按钮,谢谢!

已知,如图,正方形abcd中,E为BC上一点,AF平分

是AE=BE+DF吧!再问:是,我打错了。求解!再答: 延长EB至G点,使BG=DF,链接AG已知,∠DAF=∠FAE,边AD=AB∴ΔADF≌ΔABG(SAS)∴∠BAG=∠DAF∵∠DA

已知正方形ABCD中,E为对角线BD上一点,过E点作EF垂直BD交BC于F

(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=C

如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

COME ON已知正方形ABCD边长为1CM,点E在对角线上,BE=BC.P是EC上一点,PF垂直于BD,PG垂直于BC

作CH⊥AB则CH=√2/2∴S△BCE=1/2*1*√2/2=√2/4连接BP则S△BPE=1/2*1*PF,S△BPC=1/2*1*PG∴1/2*(PF+PG)=√2/4∴PF+PG=√2/2

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

已知正方形ABCD中,E是BC上一点,DE=2,CE=1,则正方形ABCD的面积为(  )

如图,∵在直角△DCE中,DE=2,CE=1,∠C=90°,∴由勾股定理,得CD=DE2-CE2=22-12=3,∴正方形ABCD的面积为:CD•CD=3.故选:B.

已知四棱锥pabcd中,底面四边形为正方形,侧面pdc为正三角形,且pdc⊥abcd,e为pc中点.

证明:(1)连接AC交BD于点O,连接EO因为:ABCD是正方形所以:AC⊥BD,点O是AC的中点因为:点E是PC的中点所以:EO是三角形APC的中位线所以:EO//AP又因为:EO是平面APC和平面

已知:如图,正方形ABCD中,E为BC上一点,AF平分

(没时间画图,请谅解.)延长CD在CD延长线上截取DG=BE在△ABE与△ADG中AB=AD∠B=∠ADB=90°BE=DG∴△ABE≌△ADG(SAS)∴AE=AD,∠BAE=∠DAG∴∠EAG=9

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥B

解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略

已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥B

解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证

已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F

将AF顺时针旋转90º到AG位置,如图.连接BG.AB是AD顺时针旋转90º的位置.所以ΔABG是ΔADF顺时针旋转90º得到的三角形.于是,BG=DF,∠5=∠1,∠A

已知,正方形ABCD中,点E为AD边上一点,CE交对角线BD于点P,PE=AE

证明:(1)连AC,AP,AD=CD∠ADP=∠CDP=45°DP=DP⇒△ADP≅△CDP⇒PA=PC⇒∠PAC=∠PCAEA=PE⇒∠E