已知某抛物线与抛物线y=-4分之1x²-3的形状和开口方向都相同

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:16:15
已知某抛物线与抛物线y=-4分之1x²-3的形状和开口方向都相同
已知抛物线y=x^2-4与直线y=x+2.求抛物线在焦点处的切线方程.

y=x+2带入抛物线x+2=x^2-4x^2-x-6=0x=-2orx=3y=0ory=5设切线方程分别为y=k(x+2)y-5=k(x-3)把y=k(x+2)带入抛物线k(x+2)=x^2-4x^2

已知抛物线y=ax^2+bx+c的顶点坐标为(4,-1),与y轴交于点(0,3),求这条抛物线对应的函数表达式.

抛物线y=ax^2+bx+c的顶点坐标为(4,-1),所以设表达式为:y=a(x-4)^2-1,又知抛物线与y轴交于点(0,3),所以3=16a+1a=1/8所以函数表达式为:

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

已知抛物线的焦点F在y轴上,抛物线上一点A(a,4)到准线的距离是5,过点F的直线与抛物线交于M、N两点,过M、N两点分

(Ⅰ)由题意可设抛物线的方程为x2=2py(p≠0),因为点A(a,4)在抛物线上,所以p>0,又点A(a,4)到抛物线准线的距离是5,所以,+4=5,可得p=2,所以抛物线的标准方程为x2=4y。(

已知某抛物线与抛物线y=2x²+3的形状、开口方向都相同,顶点为(0.4),求次抛物线解析式!

y=2(x±2)^2再问:要过程!再答:设抛物线y=2(x+b)^2把顶点(0.4)代入得4=2b^2b=±2晕应该是y=2(x±√2)^2

已知某抛物线与抛物线y=-1/4x2-3的形状和开口方向都相同,且顶点坐标为(-2,4).求这条抛物线的函数解析

因为某抛物线与抛物线y=-1/4x2-3的形状和开口方向都相同所以所求抛物线的二次项系数=-1/4又因为顶点坐标为(-2,4)所以所求的抛物线的解析式是:y=(-1/4)*(x+2)^2+4即:y=-

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知抛物线x2=4y.过抛物线焦点F,作直线交抛物线于M,N两点

因M,N两点均在抛物线x²=4y上,∴可设:M(2m,m²),N(2n,n²)又三点M,F(0,1),N共线.∴由三点共线条件可得:mn=-1.由抛物线定义,可得:|MF

已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若

由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0

已知抛物线顶点抛物线顶点在坐标原点抛物线焦点与椭圆x²/16+y²/15=1的左焦点相同抛物线上求一

(1)设抛物线的解析式为y=kx2+a∵点D(2a,2a)在抛物线上,4a2k+a=2a∴k=∴抛物线的解析式为y=x2+a(2)设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,在Rt△GD

已知某抛物线与抛物线y=-1/4x^2-3的形状和开口方向都相同,且顶点坐标为(-2,4)

1、设抛物线为y=a(x-k)²+h因为形状与开口方向相同,所以抛物线与y=-1/4x²-3的a值相同所以a=1/4带入顶点坐标y=1/4(x+2)²+42、可以使顶点过

已知抛物线y方=4x及其焦点,求圆心在抛物线上,且与x轴及抛物线的准线都相切的圆标准方程

1楼你的抛物线方程看错了.因为与x轴及抛物线的准线都相切,且圆心到准线的距离等于到焦点的距离,所以焦点在圆上,所以焦点就是与x轴的切点.所以圆心为(1,2)或者(1,-2),半径为2.所以方程为(x-

已知抛物线y=1/4x~2和直线y=ax+1无论a取何值,抛物线与直线必有两个不同交点.

直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.

初三数学题 已知一条抛物线与抛物线y=x²-2x-4关于x轴对称 这条抛物线所表示函数的关系式为?

-y=x²-2x-4移项得y=-x²+2x+4关于x轴对称就是x相等.再问:如果关于y轴对称呢再答:y相等,x添个负号搞不清就取几个特殊值画函数图

已知抛物线C1的解析式是y=2x2-4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.

抛物线C2与抛物线C1关于x轴对称,横坐标不变,纵坐标互为相反数,即-y=2x2-4x+5,因此所求抛物线C2的解析式是y=-2x2+4x-5.

已知抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,则抛物线的方程为

已知抛物线x^2=2py(p>0)的准线y=-p/2圆x^2+y^2-4y-5=0x^2+(y-2)^2=9抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,-p/2=-3p=

已知抛物线y=2x平方和直线y=4x (1)求此抛物线与直线所围成图形的面积

(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x

已知抛物线y=ax²+bx+c的顶点坐标是(-½,3),且与抛物线y=4x2的形状相同,则()

形状相同a=4y=4(x+1/2)²+3=4x²+4x+4选A再问:可以详细点么==解题思路说下好吧有点不明白再答:哪里不懂再问:就是如果它们形状相同有哪些结论呢还有a为什么等于4