已知服从区间上的均匀分布,求 的函数 的概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:23:23
用分布函数法求解f(x)=1/2,0
用最小值公式.就一下出来了.再问:能告诉我答案吗?再答:Z=min{X,Y}f(z)=2(1-z)0
密度函数f(x)=1,0
这种涉及均匀分布的问题画图来解决是比较方便的首先,(x,y)服从二维均匀分布,密度函数是面积的倒数,即1/a^2P{Z
n的分布函数G(n)n的概率密度函数g(n)ε的分布函数F(ε)ε的概率密度函数f(ε)f(ε)=1,0
再问:过程呢?再答:
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
f(x)=1/3-2
详细过程点下图查看
这两个表述的是同一个东西
/>1)X在(0,2)上均匀分布,所以X的密度函数是:通过积分可以求出X的分布函数:2)可以利用密度函数求出这个概率,也可以利用分布函数,以下为步骤,结果是0.5:3)我们可以把Y写成X的函数,Y=g
我做成图片供你参考
概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.
由已知,f(x)=1/2,(-1再问:x��ȡֵ��ΧΪʲô�ǣ�-1,1������[-1,1]?���y��ȡֵ��ΧΪʲô��[-1,3)����ȡ��ô��再答:��Щ����ϸ�����⣬�
由方差的性质:D(Y)=D(2X+1)=4DX,而均匀分布的方差:DX=(3-1)^2/12=4/12=1/3故:D(Y)=4/3这个题是方差的性质与均匀分布的方差的应用,要熟练掌握.
f(x)=1/(b-a)P{X(2a+b)/3)f(x)dx=1/3
如图,用先求分布函数,再求导
由题,设Y的概率密度为fY(y),分布函数为FY(y),由于X在区间(0,1)上的均匀分布∴Y=2X+1∈(1,3)∴对于任意的y∈(1,3),有FY(y)=P{Y≤y}=P{2X+1≤y}=P{X≤
%%MonteCarlo方法Len=1e6;x1=2+rand(1,Len)*6;x2=2+randn(1,Len);x3=exprnd(3,1,Len);x=x1+x2.^2+x3.^2;count
P(Y≤y)=P(e^2x≤y)=P(x≤lny/2)而X服从U(1,2)所以P(X≤x)=x于是P(Y≤y)=P(x≤lny/2)=lny/2所以f(y)=1/2y因为x在(1,2)上所以y=e^2