A B=AB,证明A对称阵当且仅当B也是对称阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 05:54:45
A B=AB,证明A对称阵当且仅当B也是对称阵
设A,B均为正定矩阵,则AB正定当且仅当AB=BA

用A*表示矩阵A的共轭转置,其余同.必要性:设AB是正定矩阵,则AB=(AB)*=B*A*=BA.充分性:设AB=BA,则我们已看到AB=BA=B*A*=(AB)*即AB是Hermite矩阵,下面只需

设A是n阶实对称矩阵 证明:A是半正定矩阵当且仅当对任意n阶半正定矩阵B都有tr(AB)大于等于

必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

用柯西不等式证明:若a、b为正数,则a+b≥2根号ab,此式当且仅当a=b时取等号

【(根号a)²+(根号b)²】【1+1】≥(根号a+根号b)²当且仅当根号a=根号b时即a=b时取等号你把这个式子往下算,最后就是你想要的柯西不等式的应用重要的是配型,通

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

设C为n阶实可逆矩阵,A为n阶实对称矩阵,证明:A正定当且仅当C'AC正定

必要性:A正定→A与E合同→存在可逆矩阵D,使得A=D'D.那么B=C'AC=C'(D'D)C=(DC)'(DC),所以B与E合同→B正定;充分性:B=C'AC正定→B与E合同→存在可逆矩阵M,使得B

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设A B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA.

证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B

如何证明当且仅当a=b时,均值不等式才能有最大最小值?

a-2√(ab)+b=(√a-√b)^2我们知道对于一个平方肯定是大于等于0的,即(√a-√b)^2≥0从这个式子中我们可以看到,这个平方最小值就是等于0,此时:√a-√b=0即a=

线性代数 设AB都是n阶对称矩阵,且AB也是对称矩阵,证明:AB=BA

其实这是个充分必要的由已知,A'=A,B'=B所以有AB是对称矩阵(AB)'=ABB'A'=ABBA=AB有问题请消息我或追问

A,B可交换且是对称半正定矩阵,证明AB是对称半正定矩阵.注意是半正定!

A,B是对称的,可交换的故他们可同时对角化.且AB可与其同时对角化.A,B是半正定的,对角化后对角线上的结果是非负的.故AB对角化后的结果对角线上非负.故AB是半正定的.另外对称是显然的.再问:为什么

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B

若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上

设A,B是n阶矩阵,证明:当且仅当A和B都可逆,乘积矩阵AB可逆.

知识点:|AB|=|A||B|A可逆|A|≠0证:A,B都可逆|A|≠0,|B|≠0|A||B|≠0|AB|≠0AB可逆

线性代数设A与B是两个n阶对称行列式,证明:当且仅当A与B可交换时,AB是对称的.课本上先证明了A与B可交换时,AB是对

当且仅当是充分必要的意思,即两个结论可互推既在证明:A与B可交换时,AB是对称的又要证明:AB是对称时,A与B可交换

设A,B为N阶对称阵 证明AB为对称阵的充要条件为AB=BA

证明:必要性已知AB为对称阵转置(AB)'=B'A'又A'=AB'=B(AB)'=AB所以有AB=BA充分性已知AB=BA(AB)'=(BA)'=A'B'又A'=AB'=B所以(AB)'=ABAB为对

A为n阶实矩阵,证明:AA'=A^2当且仅当A=A‘

AA'=AA,取两边转置有A'A=A'A',即A(A'-A)=0,-A'(A'-A)=0.两式相加有-(A'-A)^2=0,则A=A'

设A,B为n阶矩阵,且A,B为对称阵,证明 B的转置乘以AB也是对称阵

A为对称矩阵,则A'=A,A'是A的转置矩阵.所以B=B'有[B'×(AB)]'=(AB)'×B=B'×A'×B=B'×(A'B)=B'×(AB)证毕