已知曲线y等于1/3x3 4/3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 07:17:23
已知曲线y等于1/3x3 4/3
已知曲线过点(2,1),且曲线上任一点(x,y)处 的切线斜率等于-1-y/x,求此曲线方程

是(-1-y)/x吗?在任一点(x,y)的切线斜率就是在该点的导数值,dy/dx=-(1+y)/x,解该微分方程,dy/(1+y)=-dx/x,两边积分,∫d(1+y)/(1+y)=-∫dx/xln(

已知曲线f(x)=1/x3的切线斜率等于-3,则切线方程

对f(x)求导得负3倍的x的平方分之一,让其等于-3,解得x=正负1/3,代入曲线得到f(x)=正负1,其中x=1/3时,f(x)=1,x=-1/3时,f(x)=-1.然后就能求出两条切线方程,3x+

已知曲线y=3x2,求在点A(1,3)的切线方程

y'=6xk=y'|(x=3)=6切线方程y-3=6(x-1)y=6x-3

已知曲线y=x^3+2x-1,求过点p(0,1)与曲线相切的曲线方程.

这个问题简单哦y'=3x^2+2当x=0时.得K=2又过(0,1)得切线方程y=2x+1完毕给分

求曲线y=3X平方-1的斜率等于6的切线方程

y=3X²-1的斜率等于6的切线方程对曲线求一阶导数,则斜率等于6x=6,则x=1,那么y=1,切线过点(1,1)斜率为6,切线方程为y-1=6(x-1)y=6x-5

31X83/2-34/3x83/2x2-9.5x34/3

首先将其全部化为分母分2和3的分数形式:(话说34/3x83/2x2的最后乘以2是直接在整体基础上乘的吧?)解答如下:原式=93/3X83/2-68/3x83/2-19/2x34/3=(93X83)/

已知曲线y=1/3x3+4/3 求曲线过点P(2,4)的切线方程

y=1/3x3+4/3y的导数y'=x²,所以x=a处的斜率为a²

曲线y=㏑(x-1)上的点到直线x-y+3=0的最短距离等于

把直线向曲线平移,直到两者相切时,切点就是曲线上距原直线最近的点.直线的斜率k=1.曲线y=ln(x-1)的导函数是y'=1/(x-1),它在x=2处的斜率为1.所以,曲线上离直线最近的点是(2,0)

已知曲线y=(1/3)x^3+4/3 求斜率为4的曲线的切线方程

y'=x^2k=y'=4x=±2x=-2,y=-4/3,k=4x=2,y=4,k=4所以是12x-3y+20=0和4x-y-4=0

已知曲线y=(1/3)x^3+4/3,求斜率为4的曲线的切线方程

y'=x^2=4x=±21.x=2切点为(2,8/3+4/3)即(2,4)方程为y-4=4(x-2)2.x=-2y=-8/3+4/3=-4/3切线方程为y+4/3=4(x+2)

12.8X34.5+12.8X12.3+46.8X87.2=?

12.8*(34.5+12.3)+46.8*87.2=12.8*46.8+46.8*87.2=(12.8+87.2)*46.8=100*46.8=4680对吗?

已知曲线y=1/3x~3+4/3.求曲线过点P(2,4)的切线方程

储备知识:1)曲线y=x^n对其求导(即求其微分)y’=n•x^(n-1)若有点Q(a,a^n)把x=a代入y’=n•x^(n-1)得到y’=n•a^(n-1)即为

已知曲线y=x2 .曲线的切线过M(3,5).求切线方程

1、y=x2y'=2x设切点是(a,a2)切线斜率2ay-a2=2a(x-a)过M5-a2=2a(3-a)=6a-2a2a2-6a+5=0a=5,a=1代入y-a2=2a(x-a)所以切线是10x-y

已知曲线y=x2 .曲线的切线过M(1,-3).求切线方程

设过(x0,x0^2)那么切线为2x0*x-2x0^2=0过1,-32t^2-2t-3=0解得t=-1,1.5不知道对不对……

已知曲线为 曲线过点已知曲线y=1/3x3+4/3 (1)求曲线过点P(2,4)的切线方程

对函数y=1/3x3+4/3求导可得y′=x^2所以,曲线在点P(2,4)处的斜率是:k=y′|x=2=4因此,曲线上点P(2,4)处的切线方程是:y-4=4(x-2)整理得:4x-y-4=0

已知曲线C是两定点M(3,-1)、N(-1,5)的距离之比等于2的点的轨迹,求证曲线C的方程是3x^2+3y^2+14x

设P(x,y)是C上的点PM/PN=2所以√[(x-3)²+(y+1)²]=2√[(x+1)²+(y-5)²]平方x²-6x+9+y²+2y

已知曲线y=1/3x的3次方+4/3求曲线的斜率

y=1/3x的3次方+4/3曲线的斜率为曲线的一阶导y'=x的平方

已知曲线y=1/3x2+4/3 求曲线过点P(2,4)的切线方程

注意是“过某点…”,则此点未必是切点.1、若点P为切点,则切线斜率k=f'(2);2、若点P不是切点,设切点为Q(m,n),则由导数得到的切线斜率k=f'(m)等于直线PQ的斜率,再利用点Q在曲线上,