已知方程kx² x 1=0,求k的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:59:45
已知方程kx² x 1=0,求k的取值范围
已知关于x的方程kx²+2x-1=0有两个不相等的实数根x1和x2且满足(x1+x2)=1,求k的值,

已知关于x的方程kx²+2x-1=0有两个不相等的实数根x1和x2且满足(x1+x2)=1,求k的值,有两个不相等的实数根则根的判别式=4+4k>0则k>-1x1+x2=-2/k=1则k=-

(1):已知关于x的方程x^2 - kx + k^2 + n = 0,有两个不相等的实数根x1,x2,且(2x1 + x

大前提:1.其判别式△为k^2-4k^2-4n=-3k^2-4n>0-3k^2>4n,而-3k^2为非负数,所以n<0(2x1+x2)^2-8(2x1+x2)+15=0(2x1+x2-3)(2x1+x

已知方程x2+kx+6=0的两个实数根为x1,x2,同时方程x2-kx+6=0的两个实数根为x1+5,x2+5,则k的值

∵方程x2+kx+6=0的两个实数根为x1,x2,∴x1+x2=-k,x1•x2=6;又∵方程x2-kx+6=0的两个实数根为x1+5,x2+5,∴x1+5+x2+5=k,(x1+5)•(x2+5)=

已知:x1,x2是关于x的方程x^-kx+k-1=0的两个实数根,求y=(x1-2x2)(2x1-x2)的最小值.

由题意,y=(x1-2x2)(2x1-x2)=2x1²-x1x2-4x1x2+2x2²=2(x1+x2)²-9x1x2因为x1,x2是x²-kx+k-1=0的实

已知x1、x2是关于x的方程x2-kx+k-1=0的两个实数根,求y=(x1-2x2)(2x1-x2)的最小值.

∵x1、x2是关于x的方程x2-kx+k-1=0的两个实数根,∴x1+x2=k,x1x2=k-1,∴y=(x1-2x2)(2x1-x2)=2x12-x1x2-2x1x2+2x22=2x12-3x1x2

已知关于x的方程kx^2+2(k-1)x+k=0有两个不相等的实数根x1,x2

第1题:b^2-4ac=4(k-1)^2-4k^2=4k^2-8k+4-4k^2=4-8k要使方程有有两个不相等的实数根,必须b^2-4ac>0,即4-8k>0,则k<1/2且k不为0.第2题:根据韦

已知关于x的方程kx^2+2x-1=0有两个不相等的实数根x1,x2,且满足(x1+x2)^2=1,求K的值.

由根与系数的关系(即韦达定理)知:x1+x2=-2/k,所以4/k^2=1,得:k=±2;考虑△,△=4+4k,显然当k=-2时,△

已知关于x的方程kx²+(2k-1)x+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;

X1,X2互为相反数的话X1+X2=-(2K-1)/2K=0(两根之和等于-B/2A)2K-1=0K=1/2

1.已知方程X^2+KX+K+2=0的两个是数根是X1X2且X1^2+X2^2=4求K的值.

1.根据韦达定理得到:x1+x2=-k,x1x2=k+2x1^2+x2^2=(x1+x2)^2-2x1x2=4k^2-2(k+2)=4k^2-2k-8=0(k-4)(k+2)=0k=4或-2又判别式=

已知方程x2+kx+2k-1=0的两个实数根为x1,x2,且x1+x2=x1*x2,求k的值以及方程的两个根x1,x2.

x1+x2=-kx1*x2=2k-1-k=2k-1k=1/3x1=(-1+根号13)/6x2=(-1-根号13)/6

已知关于x的方程(2k+1)x2-4kx+(k-1)=0求k

这个方程怎么样啊.题目不完整啊

已知方程kx^2-(2k-1)x+k-2=0的两根为x1,x2,x1+x2=3,求k的值

韦达定理(2k-1)=3kk=-1再问:谢谢,那么过程呢???我还有5分,谢谢再答:韦达定理x1+x2=(2k-1)/kx1x2=(k-2)/kx1^2+x2^2=(x1+x2)^2-2x1x2=[(

关于X方程x^2+kx+3/4k^2-3k+9/2=0的两实数根x1 x2 求(x1^2011)/(x2^2012)

方程有实根,⊿≥0,即k^2-4[(3/4)k^2-3k+9/2]≥0k^2-3k^2+12k-18≥0-2k^2+12k-18≥0k^2-6k+9≤0(k-3)^2≤0所以k=3从而原方程为x^2+

已知关于X的一元二次方程x²+KX-1=0,设方程的两跟分别为X1,X2,且满足X1+X2=X1X2,求K的值

x²+kx-1=0,x1+x2=-kx1x2=-1∵x1+x2=x1x2∴-k=-1∴k=1验证:△=k²+4>0符合题意即k=1

已知关于x的方程x^2-kx+k^2+n=0有两个不相等的实数根X1,X2且x1+x2=k.若(2X1+X2)^2-8(

设t=2X1+X2t^2-8t+15=(t-3)(t-5)=0t=3或5即2X1+X2=32X1+X2=5x1+x2=kx2=k-x1将x2=k-x1代入2X1+X2=32X1+X2=5解出x1即可

已知x1 x2是关于x的方程x² -kx+k-1=0的两个实数根.求y=(x1=2x2)(2x1-x2)的最小

解,根据方程实数根的性质,可以得到,x1+x2=(-b/a)=kx1×x2=(c/a)=k-1有因为x1,x2分别为方程x²-kx+k-1=0的两个实数根,所以,x1²-kx1+k

已知x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.

x1,x2是关于x的方程4kx^2-4kx+k+1=0的两个实根.则:x1+x2=-(-4k)/4k=1x1x2=(k+1)/4k1)(2x1-x2)(x1-2x)=2x1^2+2x2^2-5x1x2