已知方程k(x²-2x+1)-2x²+x=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:08:11
已知方程k(x²-2x+1)-2x²+x=0
已知k为负实数,方程x²-(k+1)x+k=0和x²-(k+2)x+3k=0

k为非负实数吧?(1)第一个方程可变为(x-k)(x-1)=0,因此它的两根分别为1和k,当k为非负实数时,结论自然成立.(2)如果两方程一定存在一个共同的实数根,则1或者k一定满足第二个方程.将x=

已知x的方程kx²-k(x+2)=x(2x+3)+1

(1)当k不等于2时方程是一元二次方程(2)当k等于2是方程为一元一次方程再问:有过程吗再答:(1)化简得(k-2)x方-(k+3)x-(1+2k)=0,因为一元二次方程a不得0所以k-2不得0,所以

已知:关于x的方程(k+1)x²+(3k+1)x+2k-2=0.

(1)(k+1)x²+(3k+1)x+2k-2=0当k=-1时,-2x-4=0,有1个实数根;当k≠-1时,△=(3k+1)²-4(2k-2)(k+1)=k²+6k+9=

已知方程2x^k-1+k=0是关于x的一元一次方程,则方程的解是

选不出来因为原方程式一元一次方程所以k=1.则原方程可化为2x-1+1=02x=0x=0此题没有正确选项.把我的答案采为最佳答案!谢了!

已知方程(k-2)(k-3)x的k次方+(k+2)x+1=0是关于x的一元一次方程(其中k>0)

由于是一元一次方程,故最高次为一次,又由于k>0故k=1故原方程可化为2x+3x+1=0解得x=-1/5

已知方程4x+2k=3x+1和方程3x+2k=6x+1的解相同.求k的值.

4x+2k=3x+14x-3x=1-2kx=1-2k3x+2k=6x+16x-3x=2k-13x=2k-1x=(2k-1)/3因为解相同所以1-2k=(2k-1)/33-6k=2k-12k+6k=1+

已知关于x的方程x2-(k+1)x+2k-2=0

证明:∵△=(k+1)²-4(2k-2)=k²-6k+9=(k-3)²≥0∴无论k为何值,方程总有实根∵等腰三角形∴方程有两相等的实根,即△=0∴k=3原方程为:x

已知关于x的方程x²-2(k-3)x+k²-4k-1=0

1、若这个方程有实数根,求k的取值范围2、若这个方程有一根为1,求k的值3、若以方程x²-2(k-3)x+k²-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数y=m/x的图

已知方程1/4-x^2+2=K/x-2有增根,求K的值

1/4-x^2+2=K/x-21+2(2+x)(2-x)=-k(2+x)(方程两边同时乘以最简公分母(2+x)(2-x))1+8-2x^2=-2k-xk又因为方程有增根,即要使方程的最简公分母(2+x

已知方程(k^2-1)x^2+(k+1)x+(k+7)y=k-2.

(1)k^2-1=0,且k+1=0,k+7≠0时为一元一次方程,解得:k=正负1(2)k^2-1=0时,但k+1≠0,k+7≠0时二元一次方程,解得:k=1

已知关于x的方程x^2-(2k+1)x+4(k-0.5)=0

△=〔-(2k+1)〕^2-16(k-0.5)=4k^2+4k+1-16k+8=4k^2-12k+9=(2k-3)^2不论k取何值,都有△=(2k-3)^2所以方程总有实数根当b,c为腰长时,说明方程

已知关于x的方程kx^2+(2k-1)x+k-1=0

(1)kx^2+(2k-1)x+k-1=0(kx-k+1)(x+1)=0因为解是整数,所以(k-1)/k是整数所以k=-1(2)当k=-1时,-2y^2+3y+m=0也就是2y^2-3y-m=0y1+

已知X方程,X平方+(4K+1)X+2K-1=0

(1)因为△=(4k+1)^2-4(2k-1)=16k^2+5>0,故方程一定有2个不相同的实数根(2)x1+x2=-(4k+1);x1*x2=2k-1(X1-2)(X2-2)=x1*x2-2(x1+

已知关于x的方程x平方-(3k-1)x+2k平方+2k=0.

类似a*X^2+b*X+c=0这样的问题,因为常数项系数不确定,首先需要考虑b^2-4*a*c与0的大小关系.根据不同的大小关系,有不同的解的形式,套公式就可以了.再问:这个我知道!主要是第(2)题怎

已知关于x的方程lg(x+k)=2lg(x+1),(k为常数)

1.k=2时lg(x+2)=2lg(x+1)等价于x+2=(x+1)^2且x+1>0即x^2+x-1=0且x>-1,所以x=(-1+√5)/2.2.方程lg(x+k)=2lg(x+1)等价于x+k=(

已知关于x的方程x的平方-2(k-3)x+k的平方-4k+1=0

设方程的两个根分别为p、q,则p*q=k²-4k+1;因为(p,q)在反比例函数的图像上,所以p*q=M;结合上式得:M=k²-4k+1=(k-2)²-3≥-3;M的最小

已知关于x的方程(2k+1)x²-4kx+(k+1)=0

(1)当2k+1=0,即k=-1/2时,此方程是一元一次方程2x+1/2=0,x=-1/4(2)当2k+1≠0,即k≠-1/2时,此方程是一元二次方程二次项系数为2k+1,一次项系数为-4k,常数项为

已知关于x的方程x方-2(k-3)x+k方-4k-1=0

已知关于x的方程x方-2(k-3)x+k方-4k-1=01.方程有实数根,即b^2-4ac>=0,即4(k-3)^2-4(k^2-4k-1)>=0=>4(10-2k)>=0解得k的取值范围是k

已知关于x的方程x²-2(k-3)x+k²-4k--1=0

(1)因为方程有实根,所以判别式=4(k-3)^2-4(k^2-4k-1)>=0,解得k

已知方程x^2+(2k-1)x+k^2=0,求使方程有两个正根的充要条件

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O再问:Ϊʲô1-2K>0k^2>0再答:x1+x2=1-2kx1x2=k²��Ϊ����������ԣ�x1+x2>0��