已知方程2x2-(m 1)x m=0有一正一负实根,求实数m的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:26:42
已知方程2x2-(m 1)x m=0有一正一负实根,求实数m的取值范围.
已知y=(m+1)xm-2是反比例函数,则函数图象在(  )

依题意有m-2=-1,解得m=1,因而函数是y=2x,故函数经过第一,三象限.故选A.

已知x1,x2是方程x^2+5x+1=0的两个实数根.求x1^2*x2+x2^2*x2的值?

x^2+5x+1=0设x1、x2为方程两个根.根据根与系数的关系,则有x1+x2=-5x1*x2=1x1^2*x2+x2^2*x2=x1*x2(x1+x2)=1*(-5)=-5

已知关于x的方程【m+2】xm-1的次方+4=0是一元一次方程,求关于y的方程3分之5y+3m-2m分之my-3=1得解

关于x的方程(m+2)x^(m-1)+4=0是一元一次方程那么x的指数等于1,系数不等于0∴m-1=1,且m+2≠0解得:m=2∴关于y的方程(5y+3m)/3-(my-3)/(2m)=1即(5y+6

已知xm=3,xn=6,求xm-n,x3m-2n的值.

∵xm=2,xn=3,∴xm-n=xm÷xn=23;x3m-2n=x3m÷x2n=(xm)3÷(xn)2=27÷36=34.

已知圆方程X2+Y2=25

解:利用公式可直接写出切线方程为:4x-3y=25(附:已知圆方程X²+Y²=r²上一点A(a,b),则其过A点的切线方程为:ax+by=r²)

已知多项式xm次方yn-1次方+x2次方y2次方-x4次方-5是5次多项式,则m+n=

1、因为多项式的次数就是最高次项的次数,第二、第三项的次数都是为4,如果他们时次数最高,多项式绝不可能次数为5,只有m+(n—1)=5时,最高次项的次数才能为5.m+n=62、说道关于x的多项式,只能

已知方程x2

把x=m代入方程得:m2-3m-85=1,解得:m=-2625.关于x的不等式2(5x+3)≥m-3(1-2x),去括号,得:10x+6≥-2625-3+6x,移项,得:10x-6x≥-2625-3-

已知m≠n,解方程:[xn+(7-x)m]/7=[xm+(3-x)n]/3

[xn+(7-x)m]/7=[xm+(3-x)n]/3两边都乘以213[xn+(7-x)m]=7[xm+(3-x)n]把系数乘进去3xn+3(7-x)m=7xm+7(3-x)n3xn+21m-3xm=

已知方程2xm+2+5=9是关于x的一元一次方程,则m=______.

由一元一次方程的特点得:m+2=1,解得:m=-1.故填:-1.

已知M1(x1,y1)M2(x2,y2)是正比例函数y=kx k不等于0图像上2点,当x1小于x2时,y1小于y2,k的

再答:亲,对我的回答满意的话,就给个好评吧。如果还有不清楚的地方,可以跟我继续交流哦。再问:我要原因再问:知道答案再答:因为x1大于x2y1大于y2,所以kx1大于kx2,所以k大于0再答:因为k大于

、已知x1、x2是方程2x2+3x-4=0的两个根,那么:x1+x2=

题目写清楚点儿啊X1+X2=-3/2X1*X2=-2|X1-X2|=√41/2析:由根与系数的关系即得X1+X2=-3/2与X1*X2=-2而|X1-X2|^2=(X1+X2)^2-4X1*X2m=-

已知x,y,m,n∈R,且x2+y2=2,m2+n2=4,求:xm+yn的最大值?

三角代换,令x=根号2*cosa,y=根号2*sina;m=2*cosb,y=2*sinb;则xm+yn=2倍根号2*(cosacosb+sinasinb)=2倍根号2*cos(a-b).故最大值就是

已知圆的方程为x2 +y2=1/2

圆半径r=1/√2椭圆a=5,b=4令与轴的夹角为θ,则A(cosθ/√2,sinθ/√2),B(5cosθ,4sinθ)P(x,y)P的横坐标x=B的横坐标=5cosθP的纵坐标y=A的纵坐标=si

已知关于x的方程x2-mx-3=0的两实数根为x1、x2,若x1+x2=2,求x1、x2的值.

解法一:已知关于x的方程x2-mx-3=0的两实数根为x1、x2.由根与系数的关系可得x1•x2=-3,又∵x1+x2=2解得x1=3,x2=-1或x1=-1,x2=3.解法二:∵x1+x2=2,∴m

已知关于x的方程(m-3)xm+4+18=0是一元一次方程.

(1)由一元一次方程的特点得m+4=1,解得:m=-3.故原方程可化为-6x+18=0,解得:x=3;(2)把m=3代入上式原式=-6m+7=18+7=25.

若(xm÷x2n)3÷xm-n与4x2为同类项,且2m+5n=7,求4m2-25n2的值.

(xm÷x2n)3÷xm-n=(xm-2n)3÷xm-n=x3m-6n÷xm-n=x2m-5n,因它与4x2为同类项,所以2m-5n=2,又2m+5n=7,所以4m2-25n2=(2m)2-(5n)2

已知x2m=2,求(2x3m)2-(3xm)2的值.

原式=4x6m-9x2m=4(x2m)3-9x2m=4×23-9×2=14.

已知方程x2 +y2+4x-2y-4=0,求x2 +y2的最大值

原式可化简为(x+2)^2+(y-1)^2=9这是一个以(-2,1)为半径的圆所以x^2+y^2的最大值就是圆上一点到原点的最大距离就是圆心到原点的距离加上半径等于3+根号5

已知xm=6,xn=-2,则xm-2n=______.

∵xm=6,xn=-2,∴xm-2n=xmx2n=xm(xn)2=6(−2)2=32.故答案为:32.