已知数列的首项a1等于5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:01:07
∵a1+b1=5,a1,b1∈N*,∴a1,b1有1和4,2和3,3和2,4和1四种可能,当a1,b1为1和4的时,c1=ab1=4,前10项和为4+5+…+12+13=85;当a1,b1为2和3的时
an=4-4/a(n-1)an-2=2-4/a(n-1)=2{[a(n-1)-2]/a(n-1)}于是有1/(an-2)=1/2+1/[a(n-1)-2]所以有bn=1/2+b(n-1)即bn-b(n
Sn^2=an×(Sn-1/2)=(Sn-Sn-1)×(Sn-1/2)整理,得Sn-1-Sn=2SnSn-1等式两边同除以SnSn-11/Sn-1/Sn-1=2,为定值.1/S1=1/a1=1/1=1
∵a1+b1=5,a1,b1∈N*,a1>b1,a1,b1∈N*(n∈N*),∴a1,b1有3和2,4和1两种可能,当a1,b1为4和1的时,ab1=4,前10项和为4+5+…+12+13=85;当a
这是个首项为3公差为2的等差数列前3项的和等于15
由题意可得,an+1-an=-1,此等差数列是以2为首项,以-1为公差的等差数列,则此数列的通项an=2+(n-1)d=3-n,故选D.
a1=1,a2=q,a3=q^2,则a1+a2+a3=1+q+q^2=7,即q^2+q-6=0,解得q=2或q=-3(舍去),所以q=2,所以an=a1×q^(n-1)=2^(n-1)
(1)因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/
我理解的你的题目,是要求第N项与第N+1项之积等于2下面这个数列显然符合你的题目要求:1,2,1,2,1,2,1……其通项公式为an=(3+(-1)^n)/2
an=2a(n-1)+3a(n-2)(n>=3)设an-αa(n-1)=β[a(n-1)-αa(n-1)]得α+β=2,αβ=-3得α=3,β=-1,或β=3,α=-1得an-3a(n-1)=-[a(
如果an=n(n+an-1)的an-1表示第n-1项所以an=n^2+nan-1所以an-nan-1=n^2an-1-(n-1)an-2=(n-1)^2an-2-(n-2)an-3=(n-2)^2..
Sn=n²+1Sn-1=(n-1)²+1an=Sn-Sn-1=n²+1-(n-1)²-1=2n-1a1=1再问:我也同意你的观点,我算的也是1,有的网友算的是2
你县假设An=1+(n-1)*1Bn=4+(n-1)*1则Cn=A(n+3)下角标n+3是由Bn整理的
要证明的结论有问题吧,应该是证明“对任意的x>0,an≥1/(1+x)-1/(1+x)²*[2/(3^n+2)+x],n=1,2,……”吧?证明:a(n+1)=3a(n)/[2a(n)+1]
据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)
a1=s1=1+1=2再问:
由题意可得,a11−q=10,|q|<1且q≠0∴a1=10(1-q)∴0<a1<20且a1≠10 故答案为:0<a1<20且a1≠10.