已知数列{an}中,a1=六分之五,a2=三十六分之十九,数列{bn}是公差为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:31:11
已知数列{an}中,a1=六分之五,a2=三十六分之十九,数列{bn}是公差为
已知数列{an}中,a1=2,an+1=3an+2,记bn=an+1,求证:数列{bn}为等比数列

解a(n+1)=pan+q这类题型常用方法如下:设a(n+1)+λ=μ(an+λ),然后求出λ、μ的值,即数列{an+λ}是等比数列设a(n+1)+λ=μ(an+λ),即a(n+1)=μan+μλ-λ

已知数列{an}中,a1=1,前n项和Sn=n+23an

(1)数列{an}中,a1=1,前n项和Sn=n+23an,可知S2=43a2,得3(a1+a2)=4a2,解得a2=3a1=3,由S3=53a3,得3(a1+a2+a3)=5a3,解得a3=32(a

已知数列{an}中,a1=2,an+1=an+cn(

借用一下你的结果c=2a(n+1)=an+2na2-a1=2a3-a2=2*2a4-a3=2*3...an-a(n-1)=2(n-1)全加起来an-a1=2(1+2+...+(n-1))=n(n-1)

已知数列an中,a1=1,an+1=2an/an+2(n属于正整数),求通项公式an?

先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2

已知数列{an}中,a1=3,前n项和Sn=12(n+1)(an+1)−1

(Ⅰ):证明:∵Sn=12(n+1)(an+1)−1,∴Sn+1=12(n+2)(an+1+1)−1∴an+1=Sn+1−Sn=12[(n+2)(an+1+1)−(n+1)(an+1)]整理,得nan

已知数列{an}中,a1,a2,a3,a4…an…构成一个新数列:a1,(a2-a1),(a3-a2)…(an-an-1

a(1)=1=b(1),b(n+1)=a(n+1)-a(n),a(n+1)=b(n+1)+b(n)+...+b(2)+b(1)=[1-1/3^(n+1)]/[1-1/3]=(3/2)[1-1/3^(n

已知数列{an}中a1=3且an+1=an+2n.求数列的通项公式

a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1

已知数列{an}中,a1=5,a10=23,通项an是项数n的一次函数,

(1)设an=kn+b由a1=5,a10=23知k+b=5,10k+b=23;k=2,b=3,an=2n+3a2009=2009*2+3=4021(2)数列bn中的第n项为数列an中的第2n-1项,即

已知数列{an}中,a1=2,anan+1+an+1=2an

解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)

已知n是正整数,在数列{an}中,a1=1,an+1=2an+1,在数列{bn}中,b1=a1.当n≥2时,bn/an=

(1)a(n+1)+1=2(an+1)数列an+1=2^nan=2^n-1你把项数与+1写清楚,或用文字描述,题不难

已知数列 {an}中,a1=56,an+1=an-12

解题步骤多,请点:http://hi.baidu.com/%B0%D7%CF%C8%C9%F9/album/item/76e496eee56912eab2fb95ee.html

已知数列{an}中,a1

解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列{an}中,a1=56

∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于

已知数列{an中}a1=3.且an+1=an+2的n次方

an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1

数列an中已知a1=3,且2an=SnSn-1,求通项公式an

因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/a1=

已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式.

此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的

已知数列{an}中,a1=4,an+1=1/2an+3/2

a(n+1)-3=1/2a(n)-3/2=1/2(a(n)-3)所以a(n)-3是等比数列,公倍为1/2a(n)-3=(1/2)^(n-1)*(a(1)-3)所以a(n)=(1/2)^(n-1)*1+

在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an

sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1

已知数列{an}中,a1=1,an+1=2an+1,令bn=an+1-an.

(1)证明:由an+1=2an+1,得an=2an-1+1(n≥2),两式相减得:(an+1-an)=2(an-an-1).∵bn=an+1-an,∴bn=2bn-1.又b1=a2-a1=(2a1+1