已知数列sn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:13:50
已知数列sn
已知数列{an}前n项和为Sn,且Sn=-2an+3

1.Sn=-2an+3有S(n-1)=-2a(n-1)+3则an=Sn-S(n-1)=-2an+2a(n-1)=>an=a(n-1)*2/3所以,{an}为共比数列,q=2/32.Sn=-2an+3有

已知数列an是等差数列,且a1不等于0,Sn为这个数列的前n项和,求limnan/Sn.limSn+Sn-1/Sn+Sn

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

已知数列an是等差数列,且a1≠0,Sn为这个数列的前n项和.求1、lim nan/Sn 2、lim (Sn+Sn+1)

1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-

已知数列{an}的前项和为Sn,数列{根号Sn+1}是公比为2的等比数列 0分

当n=1时,b1=5+a1;当n≥2时,bn=5^n-(-1)^n×3(a1+1)×4^﹙n-2﹚(a1>-1).①当n为偶数时,5^n-3(a1+1)×4^(n-2)<5^n+1+3(a1+1)×4

已知数列an=10-n,求数列{|an|}的前n项和Sn

第一题,n=10时,Sn=-(a1+a2+a3+……)+2(a1+a2+……+a9)=-(9+10-n)n/2+90=(n^2-19n)/2+90.第二题实在是看不清楚你是怎么样写的题目第三题:1&#

已知Sn是实数等比数列{an}前n项和,则在数列{Sn}中(  )

设公比为q,当q=-1时,等比数列{an}的各项是a,-a,a,-a,a,-a…的形式,a≠0.又已知Sn是实数等比数列{an}前n项和,故当n为偶数时,Sn=0,当n为奇数时,Sn=a,故选D.

已知数列{An},Sn=2的n次方.求数列{An}的通项公式

由于Sn=2^n则:S1=a1=2^1=2当n>=2时,an=Sn-S(n-1)=2^n-2^(n-1)=[2*2^(n-1)]-2^(n-1)=2^(n-1)又a1=2则:an=2^(n-1)(n>

已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列

由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn

已知数列an的前n项和为Sn,数列根号Sn+1是公比为2的等比数列

证:(1)根号Sn+1=(a1+1)*2^(n-1)=4*2^(n-1)=2^(n+1)Sn+1=2^(2n+2)=4^(n+1).1Sn=4^n.21式-2式Sn+1-Sn=4^(n+1)-4^na

已知数列的前n项和为Sn,且Sn=lgn,求数列的通项公式

(1)当n=1时,a1=S1=lg1=0(2)当n>=2时,an=Sn-Sn-1=lgn-lg(n-1)=lg(n/(n-1))所以,a1=0;an=lg(n/(n-1))(n>=2)(可把结果写成分

数学试题:已知数列{an}前n项和为Sn

S1=a1=1-1*a12a1=1a1=1/2S2=1-2a2=a1+a2=1/2+a23a2=1/2a2=1/6Sn=1-nanSn-1=1-(n-1)a(n-1)相减an=Sn-Sn-1=1-na

数列:已知an=n2^(n-1)求Sn

sn=a1+a2+a3+……+an=1*2^0+2*2+3*2^2+4*2^3+……+n2^(n-1)2sn=1*2+2*2^2+3*2^3+……+n*2^n两式相减得-sn=1+2+2^2+2^3+

已知数列an,an>0,Sn=a1+a2+a3.+an,且an=6Sn/an + 3,求Sn!

An=6Sn/(An+3)6Sn=(An)^2+3Ann>=26S(n-1)=(A(n-1))^2+3A(n-1)6An=(An)^2+3An-(A(n-1))^2-3A(n-1)(An)^2-(A(

已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn

由题意,S(n)-S(n-1)=2a(n+1)-2a(n),即a(n)=2a(n+1)-2a(n),于是a(n+1)=a(n)*3/2,即a(n)是公比是q=3/2的等比数列,且首项是a(1)=1,所

已知数列an=n²,求数列的前n项和Sn.

an=n^2=n(n+1)-n=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)]-(1/2)[n(n+1)-(n-1)n]Sn=a1+a2+...+an=(1/3)n(n+1)(n+2)-

已知数列{bn}=n(n+1),求数列{bn的前n项和Sn

n=n(n+1)=n^2+nSn=b1+b2+...+bn=(1^2+1)+(2^2+2)+...+(n^2+n)=(1^2+2^2+...+n^2)+(1+2+...+n)=n(n+1)(2n+1)

已知数列{an}的前n项和为Sn

解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:

已知数列an=n^2-n+2,求Sn

sn=a1+a2+a3+.+an=(1^2+2^2+3^2+.+n^2)-(1+2+3+...+n)+2n=n(n+1)(n+2)/6-n(1+n)/2+2n再问:三次方?这是什么数列?再答:an=n

已知数列Sn=3的n次方求数列的通项公式

Sn=3^nS(n-1)=3^(n-1)an=Sn-S(n-1)=3^n-3^(n-1)

一道关于数列 已知数列{An}的前n项和为Sn,Sn=3+2An,求An

Sn-S(n-1)=2An-2A(n-1)=An所以An=2A(n-1)An/2A(n-1)=2即An为等比为2的等比数列令n=1,S1=3+2A1=A1A1=-3所以An=-3*[2^(n-1)]