已知数列an满足an 1=2an an 2,a1=1,求数列an的通向公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:39:35
a2-a1=2,a3-a2=4,…an+1-an=2n,这n个式子相加,就有an+1=100+n(n+1),即an=n(n-1)+100=n2-n+100,∴ann=n+100n-1≥2n•100n-
你把这个数列看成俩部分a(n1)=2a(n1-1)a(n2)=2n+2an=(an1)+(an2)算算看
由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴
由an+2=3an+1-2an可得an+2-an+1=2(an+1-an)因为a2-a1=2,所以an+1-an不会等于0,则an+1-an是以2为公比的等比数列由上可得an+1-an=2^nan-a
由题意,Sn=n^2,则a1=1,S(n-1)=(n-1)^2=n^2-2n+1,n>=2an=Sn-S(n-1)=n^2-n^2+2n-1=2n-1,n>=2由于当n=1时,2n-1=1=a1所以,
a(n+1)=3an+1a(n+1)+1/2=3an+3/2=3(an+1/2)[a(n+1)+1/2]/(an+1/2)=3,为定值.a1+1/2=1/2+1/2=1数列{an+1/2}是以1为首项
a(n)=a(n+3).不可能递增.
两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
a[n+1]=2a[n]+1a[n+1]+1=2(a[n]+1)则{a[n]+1}是公比为2的等比数列a[1]+1=-2+1=-1所以a[n]+1=(-1)*2^(n-1)a[n]=-2^(n-1)-
证明:取倒数1/an+1=an+3/3an=1/3+1/an1/an+1-1/an=1/3a1=1/21/a1=2{1/an}2首项1/3公差等差数列an=3/(5+n)
a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=
(1)∵a1=2,an+1=2an+3.∴an+1+3=2(an+3),a1+3=5∴数列{an+3}是以5为首项,以2为公比的等比数列∴an+3=5•2n−1∴an=5•2n−1−3(2)∵nan=
你应该是抄错题了吧--A(n+1)=2An+2^n等式两边同时除以2^(n+1)有A(n+1)/2^n+1=An/2^n+1/2设Bn=An/2^n则B(n+1)=Bn+0.5Bn是等差数列即An/2
1.a_(1)=1,a_(n+1)=2a_(n)+2^(n)----------------1b_(n)=a_(n)/2^(n)将式子1左右两边同时除以2^(n+1),则:b_(n+1)=b_(n)+
a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1
因为不清楚你写的到底是怎样,我把我理解出的可能的两种题目都写出来.①假定原题为1/(An+1)=√[1/(An²+2)]两边同时平方,有1/(An+1)²=1/(An²+
∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4
∵s[n]=n^2a[n]∴s[n+1]=(n+1)^2a[n+1]将上述两式相减,得:a[n+1]=(n+1)^2a[n+1]-n^2a[n](n^2+2n)a[n+1]=n^2a[n]即:a[n+