已知数列an满足a1等于2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:31:56
已知数列an满足a1等于2
已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式

an=4-4/a(n-1)an-2=2-4/a(n-1)=2{[a(n-1)-2]/a(n-1)}于是有1/(an-2)=1/2+1/[a(n-1)-2]所以有bn=1/2+b(n-1)即bn-b(n

已知数列{an}满足a1=2,an+1-an+1=0(n∈N+),则此数列的通项an等于(  )

由题意可得,an+1-an=-1,此等差数列是以2为首项,以-1为公差的等差数列,则此数列的通项an=2+(n-1)d=3-n,故选D.

已知数列{an}满足an=2an-1+2n+2,a1=2

你把这个数列看成俩部分a(n1)=2a(n1-1)a(n2)=2n+2an=(an1)+(an2)算算看

等差数列已知数列{an}满足a1=4,an+1=4-(4/an)(n大于等于1),令bn=1/(an-2)

an+1=4-(4/an)a(n+1)-2=2-4/anb(n+1)=1/(a(n+1)-2)=1/(2-4/an)=an/(2an-4)=an/2(an-2)bn=1/(an-2)所以:b(n+1)

已知数列{an}满足a1=2,an+1-an=an+1*an,那么a31等于

两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-

已知数列{an}的首项a1=1,且{an}满足an=n(n+an-1),其中n大于等于2,求{an}的通项

如果an=n(n+an-1)的an-1表示第n-1项所以an=n^2+nan-1所以an-nan-1=n^2an-1-(n-1)an-2=(n-1)^2an-2-(n-2)an-3=(n-2)^2..

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列an满足a1=2,an=3an-1(n大于等于2)则数列an通项公式

a1=2,an=3a(n-1)(n大于等于2)∴an/a(n-1)=3那么{an}为等比数列,公比q为3∴an=a1*q^(n-1)an=2*3^(n-1)

已知数列an满足条件a1=-2 an+1=2an+1则a5

a[n+1]=2a[n]+1a[n+1]+1=2(a[n]+1)则{a[n]+1}是公比为2的等比数列a[1]+1=-2+1=-1所以a[n]+1=(-1)*2^(n-1)a[n]=-2^(n-1)-

已知数列{an}中,a1=1,满足an+1=an+2n,n属于N*,则an等于

应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-

已知数列{an}满足an+1=2an+3.5^n,a1=6.求an

a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=

已知数列{an}满足a1=2,an+1=2an+3.

(1)∵a1=2,an+1=2an+3.∴an+1+3=2(an+3),a1+3=5∴数列{an+3}是以5为首项,以2为公比的等比数列∴an+3=5•2n−1∴an=5•2n−1−3(2)∵nan=

已知数列{AN}满足A1=1,AN+1=2AN+2的N次方.

1.a_(1)=1,a_(n+1)=2a_(n)+2^(n)----------------1b_(n)=a_(n)/2^(n)将式子1左右两边同时除以2^(n+1),则:b_(n+1)=b_(n)+

已知数列{an}满足a1=2,an+1=2an/an+2,则an等于多少

a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1

已知数列{an}满足条件:a1=5,an=a1+a2+...a(n-1) n大于等于2,求数列{an}的通项公式

据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2

已知数列{an}满足a1=1/2,sn=n^2an,求通项an

∵s[n]=n^2a[n]∴s[n+1]=(n+1)^2a[n+1]将上述两式相减,得:a[n+1]=(n+1)^2a[n+1]-n^2a[n](n^2+2n)a[n+1]=n^2a[n]即:a[n+