已知数列an满足a1=3 2,且an=3nan-1 2an-1 n-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:32:05
an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1
anan+1-2an=0anan+1=2anan+1=2所以a2=2a3=2a4=2
当n=1时,有a13=a12,由于an>0,所以a1=1.当n=2时,有a13+a23=(a1+a2)2,将a1=1代入上式,由于an>0,所以a2=2.由于a13+a23++an3=(a1+a2++
a(n+1)-an=3n+2所以an-a(n-1)=3(n-1)-2a(n-1)-a(n-2)=3(n-2)-2……a2-a1=3*1-2相加an-a1=3[1+2+……+(n-1)]-2(n-1)=
不知道你的2^n+1是不是2^(n+1)(1)对an+1-2an=2^n+1两边同时除以2^(n+1)得a(n+1)/2^(n+1)-an/2^n=1因为a1/2=1,所以数列{an/2^n}是以1为
a2-a1=2*2=4a2=4+1=5a3-a2=2*3=6a3=6+5=11a4-a3=2*4=8a4=11+8=192、an-a(n-1)=2na(n-1)-a(n-2)=2(n-1)……a3-a
把这个分数式交叉相乘,整理成an-1减an等于4倍的an乘an-1然后把等式两边同除an乘an-1an分之一减an-1分之一等于4这样在{1/an}这个数列中,后项减前项等于一个常数,所以{1/an}
a(n+1)-an=3n+2所以an-a(n-1)=3(n-1)-2a(n-1)-a(n-2)=3(n-2)-2……a2-a1=3*1-2相加an-a1=3[1+2+……+(n-1)]-2(n-1)=
a(n+1)+1/2=3an+1+1/2=3(an+1/2)a1+1/2=1所以{an+1/2}是以1为首相,3为公比的等比数列an+1/2=3^(n-1)an=3^(n-1)-1/2
∵数列{a[n]}满足4a[n+1]-a[n]a[n+1]+2a[n]=9∴(4-a[n])a[n+1]=9-2a[n]即:a[n+1]=(2a[n]-9)/(a[n]-4)∵a[1]=1∴a[2]=
A(n+2)-2An=0A(n+2)=2AnA(n+2)/An=2{An/A(n-2)}等比数列公比2,首项为A1=1A2=2An=2^(n-1)/2(n为奇数)An=2*2^(n-2)/2=2^n/
1、a2-a1=2*2=4a2=4+1=5a3-a2=2*3=6a3=6+5=11a4-a3=2*4=8a4=11+8=192、an-a(n-1)=2na(n-1)-a(n-2)=2(n-1)……a3
(本小题14分)(Ⅰ)∵数列{an}满足a1=312,且3an+1=an,∴q=13,∴an=312×(13)n−1=313-n.…(4分)(Ⅱ)∵an=313−n,∴bn=|13-n|,∴T30=1
等于2,规律就是6个以后就是反复了.
解An+1/An=2^n所以A2/A1=2所以数列是以1为首相2为公比的等比数列所以通向公式an=2^(n-1)
因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2
a(n+1)=an+2;niseven=2a(n-1)+2a(n+1)+2=2(a(n-1)+2)[a(n+1)+2]/(a(n-1)+2)=2[a(n+1)+2]/(a1+2)=2^(n/2)a(n
(1)证明:由bn=3-nan得an=3nbn,则an+1=3n+1bn+1.代入an+1-3an=3n中,得3n+1bn+1-3n+1bn=3n,即得bn+1-bn=13.所以数列{bn}是等差数列
an=1/[n(n+1)]=1/n-1/(n+1)(1/a1)+(1/a2)+...(1/an)
a50-a49=49a49-a48=48a48-a47=47.a2-a1=1所有项相加,得:a50-a1=49+48+47+...+1=49*50/2=1225a1=a50-1225=-1175