已知数列an为等比数列,(1)若a5=4,a7=6,求a12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:21:50
解a(n+1)=pan+q这类题型常用方法如下:设a(n+1)+λ=μ(an+λ),然后求出λ、μ的值,即数列{an+λ}是等比数列设a(n+1)+λ=μ(an+λ),即a(n+1)=μan+μλ-λ
a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-
An=A1+(A2-A1)++(An-An-1)=1(1-(1/3)^n)/(1-1/3)=2/3-2(1/3)^(n+1)
Sn=2an+1Sn-1=2a(n-1)+1an=Sn-S(n-1)=2an-2a(n-1)an=2a(n-1)an/a(n-1)=2{an}为等比数列S1=a1=2a1+1a1=-1an=-1*2^
当n=1时,b1=5+a1;当n≥2时,bn=5^n-(-1)^n×3(a1+1)×4^﹙n-2﹚(a1>-1).①当n为偶数时,5^n-3(a1+1)×4^(n-2)<5^n+1+3(a1+1)×4
lim(a1+a2+a3+.an)=a/(1-q),a2,a4,...是首项为aq,公比为q^2的等比数列,lim(a2+a4+.+a2n)=aq/(1-q^2),lim(a1+a2+a3+.an)/
a(n+1)+1/2=3an+1+1/2=3(an+1/2)a1+1/2=1所以{an+1/2}是以1为首相,3为公比的等比数列an+1/2=3^(n-1)an=3^(n-1)-1/2
sn=n(2n-1)sn-1=(n-1)(2n-3)an=4n-3其实是一个等差数列再问:不懂。。。再答:对于一个数列,前N项满足该通式,则前N-1项也满足该式子做差即可,是高中常用的数列解决方法
利用当n大于等于2时an=sn-s(n-1)=2的n次方-1-(2的n-1次方-1)=2的n-1次方.然后后一项比前一项=2,所以an为等比数列
1.只有常数数列才能满足既成等比也成等差a10为12、等比a2+a4+.+a20=a1q+a3q+.+a19q=q(a1+a3+.+a19)=6故a1+a3+.+a19=6/3=2s20=a2+a4+
证:(1)根号Sn+1=(a1+1)*2^(n-1)=4*2^(n-1)=2^(n+1)Sn+1=2^(2n+2)=4^(n+1).1Sn=4^n.21式-2式Sn+1-Sn=4^(n+1)-4^na
设数列的公比为q,首项为a1,则∵a52=a10,2(an+an+2)=5an+1,∴(a1q4)2=a1q9,2(1+q2)=5q,∵等比数列{an}为递增数列,∴q=2,a1=2∴an=2n故答案
1.bn/b(n-1)=3[an-a(n-1)]=q所以an-a(n-1)=log(3)q2.a2=13a8=1d=-2an=17-2n3.n8Tn=-[a1+.an]+2[a1+.+a8=n^2-1
设等比数列的公比为q由a5²=a10>0得(a1q^4)^2=a1q^9a1=q由2[an+a(n+2)]=5a(n+1)得2[an+q^2an]=5qan所以2q^2-5q+2=0解得q=
证明:A(n+1)=Sn+3n+1,则An=S(n-1)+3n-2两式想减得A(n+1)-An=Sn+3n+1-(S(n-1)+3n-2)=An+3即A(n+1)+3=2(An+3)即(A(n+1)+
1.证:Sn=(3an-n)/2Sn-1=[3a(n-1)-(n-1)]/2an=Sn-Sn-1=[3an-3a(n-1)-1]/2an=3a(n-1)+1an+1/2=3a(n-1)+3/2=3[a
a(n+1)+1=2an+2=2(an+1)[a(n+1)+1]/(an+1)=2所以an+1是等比数列[a(n+1)+1]/(an+1)=2则q=2所以an+1=(a1+1)*2^(n-1)=2^n
an=3^(n-1)S3=3b2=15b2=5b1=5-db2=5+d(a1+b1)(a3+b3)=(a2+b2)^2[(5-d)+1](9+5+d)=(3+5)^2(d+10)(d-2)=0前n项和
若数列{lgan}为等差数列,可得:2lgan=lgan-1+lgan+1,即lgan2=lg(an-1•an+1),∴an2=an-1•an+1,∴数列{an}为等比数列;但数列{an}为等比数列,
设奇数项公差为d,偶数项公比为q由a2+a3=a4a11=a3+a4可得:2+1+d=2q1+5d=1+d+2q解之得:d=1q=2bn=a(2n-1),相当于{bn}是{an}中的奇数项故bn=n