已知数列an中an=n-根号79除以n-根号80

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:50:36
已知数列an中an=n-根号79除以n-根号80
数列{an}中,a1=1,an=2根号an-1(n>1),求{an}的通项公式

lnan=ln2根号(a(n-1))lnan=ln2+(1/2)lna(n-1)2lnan=ln4+lna(a-1)2(lnan-ln4)=lna(n-1)-ln4令bn=lnan-ln4所以{bn}

已知数列{an}中,a1=1,前n项和Sn=n+23an

(1)数列{an}中,a1=1,前n项和Sn=n+23an,可知S2=43a2,得3(a1+a2)=4a2,解得a2=3a1=3,由S3=53a3,得3(a1+a2+a3)=5a3,解得a3=32(a

已知数列an中,a1=1,an+1=2an/an+2(n属于正整数),求通项公式an?

先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2

已知在正项数列an中sn表示前n项和且2倍根号下sn=an+1 求an

由题意得,Sn=[(an+1)/2]^2①则S(n+1)=[(a(n+1)+1)/2]^2②②-①得(结合a(n+1)=S(n+1)-Sn)a(n+1)=[(a(n+1)+1)/2]^2-[(an+1

已知数列{an}满足a1=0,an+1=(an-根号3)/(根号3an+1) (n属于N+),则该数列中a20=____

由a1=0与a(n+1)=(an-sqr(3))/(sqr(3)an+1)得a2=-sqr(3)由a(n+1)=(an-sqr(3))/(sqr(3)an+1)得a(n+2)=(a(n+1)-sqr(

例1.已知数列{an}中,an-2/an=2n,且an〈0

因为an-2/an=2n所以:(an)^2-2nan-2=0根据万能公式:an=n-√(n^2+2),an=n+√(n^2+2)>0又因an<0所以:an=n-√(n^2+2),假设m>n>0那么am

已知数列{an}中,a1=2,an+1=(根号2-1)(an+2),n=1,2,3,4.,求{an}通项公式

an+1=(√2+1)an+2an+1/an+2=√2+1an/an+1=√2+1an-1/an=√2+1、、、a1/a2=√2+1将等式相乘最后有a1/an=(√2+1)^(n-1)所以an=2/(

已知an=n-根号1+n^2,判断数列(an)的单调性

an=n-√(1+n^2)an=n-(1+n^2)^(1/2)(an)'=1-(1/2)(1+n^2)^(-1/2)*2n=1-n(1+n^2)^(-1/2)=1-n/(1+n^2)^(1/2)=1-

已知在正项数列an中,Sn表示前n项和且2根号Sn=an+1求an

∵2根号Sn=an+14Sn=(an+1)^2①4S(n-1)=[a(n-1)]^2②①-②,可得:4an=[an^2-a(n-1)^2]+2[an-a(n-1)]化简可得:2[a(n-1)+an]=

已知数列{an中}a1=3.且an+1=an+2的n次方

an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1

已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式.

此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的

在数列{An}中,已知An+A(n+1)=2n (n∈N*)

(1)证明:∵在数列{a[n]}中,已知a[n]+a[n+1]=2n(n∈N*)∴用待定系数法,有:a[n+1]+x(n+1)+y=-(a[n]+xn+y)∵-2x=2,-x-2y=0∴x=-1,y=

已知数列{an}中,a1=1,满足an+1=an+2n,n属于N*,则an等于

应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-

已知数列an满足1/a-an=2根号n,且an>0.求an的通项公式

由题意得an^2+2根号n*an-1=0解出来以后讨论下,因为an>0an=-根号下n+根号下n+1

已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an

a1=2>0假设当n=k(k∈N+)时,ak>0,则a(k+1)=3√ak>0k为任意正整数,因此对于任意正整数n,an恒>0,数列各项均为正.a(n+1)=3√anlog3[a(n+1)]=log3

已知数列{an}中,n属于N*,an>0 其前n项和为Sn 满足2根号下Sn=an+1

因为2√S(n)=a(n)+12√S(n+1)=a(n+1)+1所以两式平方相减4(S(n+1)-S(n))=[a(n+1)+1]^2-[a(n)+1]^24·a(n+1)=[a(n+1)]^2+2·

数列an中,an=1/(根号(n+2)+根号n),则an的前n项和为

an=1/(√(n+2)+√n)=[√(n+2)-√n]/[(√(n+2)+√n)(√(n+2)-√n)]=[√(n+2)-√n]/(n+2)-n)=[√(n+2)-√n]/22an=√(n+2)-√

已知an=n-根号下2008/(n-根号下2009),则数列{an}中第几项最小?第几项最大?快···

an=(n-根号2008)/(n-根号下2009)=(n-根号2009+根号2009-根号2008)/(n-根号2009)=1+(根号2009-根号2008)/(n-根号2009)n趋近于“根号200

在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an

sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1