已知数列an中a1等于2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:00:32
原式=1/2+1/4+1/8+……+1/2^n=1/2*[1-(1/2)^n]/(1-1/2)=1-1/2^n再问:要详细步骤再答:等比求和
Sn^2=an×(Sn-1/2)=(Sn-Sn-1)×(Sn-1/2)整理,得Sn-1-Sn=2SnSn-1等式两边同除以SnSn-11/Sn-1/Sn-1=2,为定值.1/S1=1/a1=1/1=1
借用一下你的结果c=2a(n+1)=an+2na2-a1=2a3-a2=2*2a4-a3=2*3...an-a(n-1)=2(n-1)全加起来an-a1=2(1+2+...+(n-1))=n(n-1)
∵2na(n+1)=(n+1)an,∴a(n+1)/an=(n+1)/(2n),∴a2/a1=2/(1×2)a3/a2=3/(2×2)a4/a3=4/(2×3)a5/a4=5/(2×4)……an/a(
两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-
(1)an=3a(n-1)-2an-1=3(a(n-1)-1)(an-1)/(a(n-1)-1)=3(an-1)/(a1-1)=3^(n-1)an=1+3^n(2)1/an=1/(1+3^n)1/a1
解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)
我理解的你的题目,是要求第N项与第N+1项之积等于2下面这个数列显然符合你的题目要求:1,2,1,2,1,2,1……其通项公式为an=(3+(-1)^n)/2
估计是道填空题吧?这种题直接挨个算就可以了a3=3+1/1=4a4=4+1/3=13/3a5=13/3+1/4=55/12结果看起来有点诡异,希望不是你打错题目
an+2Sn·S(n-1)=0(n≥2)Sn-S(n-1)=an所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0即1/Sn
解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
由an+1=an+2n可以列出以下各式a10=a9+2x9a9=a8+2x8a8=a7+2x7..a3=a2+2x2a2=a1+2x1以上各式相加可得a10=a1+1x2+2x2+.+9x2a10=9
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于
a(n+1)-3=1/2a(n)-3/2=1/2(a(n)-3)所以a(n)-3是等比数列,公倍为1/2a(n)-3=(1/2)^(n-1)*(a(1)-3)所以a(n)=(1/2)^(n-1)*1+
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
a(n-1)-an=3an*a(n-1)两边除以an*a(n-1)1/an-1/a(n-1)=3所以1/an等差d=3所以1/an=1/a1+3(n-1)=3n-2an=1/(3n-2)
a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1
a[n+1]=2an+3a[n-1]注:[]中的n+1、n-1均为下脚标.两边各加an得:a[n+1]+an=3an+3a[n-1]=3(an+a[n-1])令bn=an+a[n+1],则有:bn=3