已知数列an中a1等于1_且3an等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:01:12
(I)证明:因为an+1=2an+3an-1,所以an+1+an=3(an+an-1),所以an+1+anan+an−1=3是常数,所以数列{an+an+1}是以a1+a2=3为首项,等比为3的等比数
@说明:本文中下标用表示@a=3a+2所以a+1=3a+2+1所以a+1=3(a+1)所以(a+1)/(a+1)=3所以{a+1}是一个以3为公比的等比数列,又因为a=1,所以a+1=2,所以{a+1
1+an+1=4an+3+1=4(an+1)即1+an+1/an+1=4an+1=(a1+1)*4nan=4(n+1)-1
a1=1,a2=q,a3=q^2,则a1+a2+a3=1+q+q^2=7,即q^2+q-6=0,解得q=2或q=-3(舍去),所以q=2,所以an=a1×q^(n-1)=2^(n-1)
a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1
an+1-an=3^n-nan-an-1=3^(n-1)-(n-1)……a2-a1=3^1-1累加,an+1-a1=3^n+3^(n-1)+……+3-[(n-1)+(n-2)+……+1](前为等比数列
(1)an=3a(n-1)-2an-1=3(a(n-1)-1)(an-1)/(a(n-1)-1)=3(an-1)/(a1-1)=3^(n-1)an=1+3^n(2)1/an=1/(1+3^n)1/a1
a(n+1)=2an+3n-4a(n)=2a(n-1)+3(n-1)-4上面两式相减得a(n+1)-3a(n)+2a(n-1)=3a(n)-3a(n-1)+2a(n-2)=3两式相减得a(n+1)-4
我理解的你的题目,是要求第N项与第N+1项之积等于2下面这个数列显然符合你的题目要求:1,2,1,2,1,2,1……其通项公式为an=(3+(-1)^n)/2
令An=an/an-1则A1=a2/a1=23的5次方(1)A2=a3/a2=23的8次方(2)……An-1=an/an-1=23的3n-1次方(n-1)把上述n-1个等式左右分别相乘得:A1*A2*
a(1)=5/6,n>1时,a(n+1)=a(n)/3+(1/2)^(n+1),a(2)=a(1)/3+(1/2)^2=5/18+1/4=19/36a(n)=a(n-1)/3+(1/2)^n,a(n)
解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1
因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/a1=
等于2,规律就是6个以后就是反复了.
应该是A(n+1)=An+2n吧~~~=>a(n+1)-an=2n所以an-a(n-1)=2(n-1)a(n-1)-a(n-2)=2(n-2)...a2-a1=2*1把左边加起来,右边加起来得到an-
a[n+1]=2an+3a[n-1]注:[]中的n+1、n-1均为下脚标.两边各加an得:a[n+1]+an=3an+3a[n-1]=3(an+a[n-1])令bn=an+a[n+1],则有:bn=3
这道题不难,不必用数学归纳法做,下面给出几种算法.an=3an-1+2an-2可以做以下变形①(an-an-1)=2(an-1-an-2)②(an-2an-1)=an-1-2an-2(辅助思考:用特征
2^n-1是2的n次方再减1,还是2的n-1次方?再问:是2的n次方再减1再答:刚看到你的追问,现解答如下:n≥2时,an=2a(n-1)+2ⁿ-1等式两边同除以2ⁿan/2&