已知数列an中a1 1前n项和为sn=n 2 3 an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:00:49
a3=7,a1+a11=2a6=26,a6=13∴d=(a6-a3)/3=2a1=a3-2d=3∴an=3+2(n-1)=2n+1Sn=(a1+an)n/2=(2n+4)n/2=n²+2n这
(1)数列{an}中,a1=1,前n项和Sn=n+23an,可知S2=43a2,得3(a1+a2)=4a2,解得a2=3a1=3,由S3=53a3,得3(a1+a2+a3)=5a3,解得a3=32(a
因为Sn-Sn-1=n^2-3n-{(n-1)^2-3(n-1)}=2n-4.又由an=Sn-Sn-1,所以an=2n-4,最后还要验证一下,当n=1时,S1=a1,符合题意.d=an-an-1=2易
sn=3*3^1+5*3^2+.+(2n+1)*3^n①3sn=3*3^2+5*3^3+.+(2n-1)*3^n+(2n+1)*3^(n+1)②①-②-2Sn=Sn-3Sn=-2n*3^(n+1),因
因为Sn=n^2*an.1Sn-1=(n-1)^2*an-1n≥2.21-2:an=n^2*an-(n-1)^2*an-1(n^2-1)*an=(n-1)^2*an-1(n+1)*an=(n-1)*a
在等差数列{an}中,a1+a3=6,a11=21,可解得a1=1,d=2.∴an=2n-1∴bn=1/n(an+3)=1/[n(2n+2)]=[(1/n)-1/(n+1)]/2∴Sn=b1+b2+.
若是等差数列应该是这样做:a2+a5+a8+a11=a2+a8+a8+a8=2a5+2a8=2(2a1+11d)又S12=6(a1+a12)=27得:2a1+11d=9/2a2+a5+a8+a11=9
n=1时,a1=S1=k+2n≥2时,Sn=2n²+kS(n-1)=2(n-1)²+kan=Sn-S(n-1)=2n²+k-2(n-1)²-k=4n-2数列{a
S1=a1=1-1*a12a1=1a1=1/2S2=1-2a2=a1+a2=1/2+a23a2=1/2a2=1/6Sn=1-nanSn-1=1-(n-1)a(n-1)相减an=Sn-Sn-1=1-na
等差数列前n项和Sn有最小值说明公差d是大于0的因为a11/a100,a10-a10故a11+a10>0即a1+a20=a11+a10>0所以S19=19(a1+a19)/2=19*a100所以使Sn
an=2n-1(n为奇数)an=3^n(n为偶数)若n为偶数则Sn=[a1+a3+a5+...+a(n-1)]+[a2+a4+a6+...+an]=[1+5+9+...+2n-3]+[9+9^2+9^
由题意知a1+9d<0a1+10d>0可得d>0,a1<0.又a11>|a10|=-a10,∴a10+a11>0.由等差数列的性质知a1+a20=a10+a11>0,∴S20=10(a1+a20)>0
a7-a5=4=2dd=2a11=a1+10d=21a1=1Sk=k[a1+a1+2*(k-1)]/2=9k*2k/2=9k=3
Sn=n(an+1)/2S(n+1)=(n+1)[a(n+1)+1]/2用下式减上式a(n+1)=[(n+1)a(n+1)-nan+1]/2即2a(n+1)=[(n+1)a(n+1)-nan+1]即(
当n=1时,S1=a1=1/2(a1^2+a1),解得a1=1当n>1时,an=Sn-S(n-1)=1/2(an^2+an)-1/2[a(n-1)^2+a(n-1)],整理得[an+a(n-1)][a
d≠0,|a11|=|a51|-a11=a51-(a1+10d)=a1+50da1=-30da20=a1+19d-30d+19d=22d=-2a1=60an=a1+(n-1)d=60+(n-1)*(-
解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:
an=n(2^n-1)an=n*2^n-na1=1*2^1-1a2=2*2^2-2a3=3*3^3-3.an=n*2^n-nSn=a1+a2+a3+.+an=1*2^1-1+2*2^2-2+3*3^3
当n=1时,a1=S1=1当n≥2时,an=Sn-S(n-1)=3n²-2n-3(n-1)²+2(n-1)=6n-5∵当n=1时,满足an=6n-5又∵an-a(n-1)=6n-5