已知数列an中,an>0,a1=1且根号下an-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:35:16
A(n+1)-2An=0->A(n+1)=2An->A(n+1)/An=2->{An}为首项为3,比值为2的等比数列则An=A1*q^(n-1)=3*2^(n-1)Bn*An=(-1)^n->Bn=(
0=a(n+1)-3a(n)+2a(n-1)a(n+1)-a(n)=2[a(n)-a(n-1)]{a(n+1)-a(n)}是首项为a(2)-a(1)=1,公比为2的等比数列.a(n+1)-a(n)=2
借用一下你的结果c=2a(n+1)=an+2na2-a1=2a3-a2=2*2a4-a3=2*3...an-a(n-1)=2(n-1)全加起来an-a1=2(1+2+...+(n-1))=n(n-1)
先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2
/>a-5a+6a=0a-2a=3a-6a(a-2a)/(a-2a)=3设数列b=a-2a是公比为3等比数列,b1=a2-2a1=5-2*1=3b=3^na-5a+6a=0a-3a=2a-6a(a-3
由a1=0与a(n+1)=(an-sqr(3))/(sqr(3)an+1)得a2=-sqr(3)由a(n+1)=(an-sqr(3))/(sqr(3)an+1)得a(n+2)=(a(n+1)-sqr(
a(n+2)-a(n+1)-2an=0,[a(n+2)-2a(n+1)]+[a(n+1)-2an]=0,a2-2a1=3-2*1=1=(-1)^2两边除以2^2a2/2^2-a1/2=(-1/2)^2
解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)
易知道an>0,我们对an+1=1/a*(an)^2(a>0),两边同时取ln对数得lna(n+1)=2lnan-lna,则有lna(n+1)-lna=2(lnan-lna)即[lna(n+1)-ln
解题步骤多,请点:http://hi.baidu.com/%B0%D7%CF%C8%C9%F9/album/item/76e496eee56912eab2fb95ee.html
解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于
an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1
因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/a1=
此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的
a(n+1)-3=1/2a(n)-3/2=1/2(a(n)-3)所以a(n)-3是等比数列,公倍为1/2a(n)-3=(1/2)^(n-1)*(a(1)-3)所以a(n)=(1/2)^(n-1)*1+
这是一道选择题,所以可以用代入验证法把a1代入[a(n+1)-an]^2-2[a(n+1)+an]+1=0式中可得a2是4(其实得俩解一个是4一个是0,但a(n+1)>an,所以舍去0,得4)最后代入
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1
(1)证明:由an+1=2an+1,得an=2an-1+1(n≥2),两式相减得:(an+1-an)=2(an-an-1).∵bn=an+1-an,∴bn=2bn-1.又b1=a2-a1=(2a1+1