已知数列(an)的通项公式为an=-n t,数列bn的通项公式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 12:57:29
n=1时,S1=a1=2a1-1,a1=1n≥2时,an=Sn-S(n-1)=(2an-1)-(2a(n-1)-1)an=2a(n-1),故an=2^(n-1).
An=n/2^nSn=A1+A2+A3+……+An=1/2+2/2^2+3/2^3+……+(n-1)/2^(n-1)+n/2^n两端乘22Sn=1+2/2+3/2^2+……+(n-1)/2^(n-2)
a(n+1)=2an/an+1(n+1)表示下标两边去倒数1/a(n+1)=(an+1)/2an1/a(n+1)=1/2an+1/21/a(n+1)-1=(1/2)(an-1)[1/a(n+1)-1]
(1)由n2-5n+4<0,得1<n<4,故数列中有两项为负数;(2)an=n2-5n+4=(n−52)2-94,因此当n=2或3时,an有最小值,最小值为-2.
数列{anbn}成等比数列满足an=a1•qn-1其中a1是非零常数,即bn=kn,k为非零常数时,满足题意,并不一定bn=n,因而bn=2n时数列{anbn}也成等比数列.故前者推不出后者,后者推出
an=(1+2+...+n)/n=(1+n)*n/2n=(1+n)/2a(n+1)=(n+2)/2bn=1/an·a(n+1)=4/(n+1)(n+2)=2/(n+1)-2/(n+2)S(bn)=b1
S1=a1=89,S2=a1+a2=2425,S3的=S2+a3=4849.猜测Sn=(2n+1)2−1(2n+1)2.证明:①当n=1时,由以上可知,猜测成立.②假设n=k时,猜测成立,即SK=(2
设bn=根号an所以A(n-1)-An=(2倍根号An)+1等于根号[b(n-1)]^2-bn^2=2bn+1即[b(n-1)]^2=(bn+1)^2因为{a}中各项为正数,且a1=2所以b(n-1)
n≥2时,a[n]=S[n]-S[n-1]=2a[n+1]+1-2a[n]-1∴3a[n]=2a[n+1]即:a[n+1]/a[n]=3/2∴当n≥2时数列{a[n]}是公比为3/2的等比数列∵a[1
a1=6a2=a1+2*2-1a3=a2+2*3-1a4=a3+2*4-1...an=a(n-1)+2*n-1以上各式相加,得到:an=6+2*(2+3+4+...+n)-(n-1)=6+2*(n+2
由题意得an^2+2根号n*an-1=0解出来以后讨论下,因为an>0an=-根号下n+根号下n+1
n>=2an=Sn-S(n-1)=2^n-3-2^(n-1)+3=2*2^(n-1)-2^(n-1)=2^(n-1)a1=S1=2^1-3=-1,所以an=-1,n=12^(n-1),n≥2
a1=2a,a2=2a-a^2/a1=2a-a^2/(2a)=3a/2a3=2a-a^2/(a2)=2a-a^2/(3a/2)=2a-2a/3=4a/3a4=2a-a^2/a3=2a-a^2/(4a/
选择B.你的公式中,n-1是不是在a的下面.要是的话:a2=a1+2,得a2=3,依次a3=5,a4=7,.,所以通项公式为2n-1
a2=8a3+a4=48可化为8(q+q²)=48==>q+q²=6==>q=2an=a2q^(n-2)=8·2^(n-2)=2^(n+1)再问:^这个是什么。。题目是a3a4=4
由an+1an=78(n+3)n+2=7n+218n+16=78(1+1n+2)≥1,解得n≤5,又1n+2单调递减,∴当n=5或6时,an取得最大值.故答案为:5或6.
Sn=2^n-1Sn-1=2^(n-1)-1用上式减去下式an=2^(n-1)
a(n+1)=2an/(an+2)1/a(n+1)=(an+2)/(2an)=1/an+1/21/a(n+1)-1/an=1/2,为定值.1/a1=1/1=1数列{1/an}是以1为首项,1/2为公差
a2=a1+da4=a1+3da2^2=a1a4a2^2=(a1+d)^2=a1^2+2a1d+d^2a1a4=a1(a1+3d)=a1^2+3a1da1^2+2a1d+d^2=a1^2+3a1da1
(An)^2=2Sn-An=>(A(n-1))^2=2S(n-1)-A(n-1)=>(An)^2-(A(n-1))^2=2Sn-An-2S(n-1)+A(n-1)=>(An+A(n-1))*(An-A