已知抛物线的顶点在原点,对称轴是X轴,抛物线的点M(-3,m)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:19:40
已知抛物线的顶点在原点,对称轴是X轴,抛物线的点M(-3,m)
已知抛物线的顶点在原点,对称轴是y轴,且经过(-3,2)

由抛物线的顶点在原点和对称轴是y轴可设抛物线的解析式为y=ax^2又抛物线经过(-3,2)代入解析式可得a=2/9所以抛物线的解析式为y=2/9x^2在x>0的时候y随x的增大而增大(这个是这样答吧?

一直抛物线的顶点在原点,对称轴为y轴,且过(-2,-2),求抛物线的关系式

抛物线的顶点在原点可知c=0设抛物线方程为y=ax^2+bx对称轴为y轴可知-b/2a=0------------------------1过(-2,-2)可知-2=4a-2b------------

已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为______.

根据题意设抛物线解析式为y=ax2,将x=-1,y=-2代入得:-2=a,则抛物线解析式为y=-2x2.故答案为:y=-2x2.

顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6,求抛物线方程

因为,对称轴是x轴,所以设y=ax^2顶点为(0,0)焦点为(0,a\4)或(0,-a\4)(a\4)^2=36a=24or-24所以y=24x^2ory=-24x^2

顶点在原点,对称轴是x轴,并且顶点与焦点的距离是6,求抛物线的方程

顶点在原点,对称轴是x轴y²=4ax顶点与焦点的距离是6a=6(焦点可以有2个)所以抛物线的方程是y²=±24x

已知抛物线的对称轴是x轴,顶点在原点,抛物线上的点(3,m)到焦点的距离等于4,求抛物线的方程

(1)点(3,m)在y轴右侧,因此设抛物线方程为y^2=2px,其焦点(p/2,0),准线x=-p/2,根据抛物线定义,点(3,m)到准线距离等于4,即3+p/2=4,解得p=2,所以抛物线方程为y^

已知抛物线已知抛物线顶点在原点,对称轴是x轴,焦点在双曲线x^2/4-y^2/2=1上,求抛物线方程

因为对称轴x,所以设抛物线为y^2=2px(p>0),(y^2=-2px,p>0)交点坐标为F(p/2,0),把这个代入双曲线方程,求出p=4.(负的舍掉)所以方程为y^2=8x,or,y^2=-8x

已知抛物线顶点在原点,对称轴在x轴,抛物线上的点(x0,-8)到点的距离为17,求抛物线方程

是不是到焦点?(x0,-8),纵坐标-80抛物线定义到焦点距离等于到准线距离准线y=p/2所以p/2-(-8)=17p/2=9所以x²=-36x

已知抛物线的顶点在原点,对称轴是x轴,焦点在直线3x-4y+12=0上,求抛物线的通径长

对称轴是x轴则顶点在焦点在x轴4x+4y-12=0所以F(3,0)则p/2=32p=12y²=12x❤您的问题已经被解答~(>^ω^

已知双曲线都过点m(1,2)它们在x轴上有共同焦点.双曲线的对称轴是坐标轴,抛物线的顶点为原点

(1)设抛物线的方程为y²=2px将点(1,2)代入得p=2所以抛物线的方程为y²=4x抛物线的焦点为(1,0)∴c=1设双曲线的方程为x²/a²-y²

已知抛物线的顶点在原点,对称轴为y轴,且经过点(-2,8),则抛物线的函数表达式为

∵抛物线的顶点在原点,对称轴为y轴,∴设抛物线的函数表达式是y=ax²,将点(-2,8)代入,得4a=8a=2∴抛物线的函数表达式是y=2x².

已知抛物线的顶点在原点,对称轴是y轴,且经过点P(2,-3),则它的标准方程是

y=-3/4x²再问:求过程再答:因为原点,过y轴所以设y=ax²把x=2,y=-3代入,得-3=4a解,得a=-3/4所以y=-3/4x²

已知一抛物线顶点在原点,焦点在直线3x-4y-12=0上,对称轴为坐标轴,求抛物线的标准方程

若对称轴为X轴则设常数a且常数a不等于0x=ay^2焦点为(a/4,0)代入3x-4y-12=0得a=1/16所以y^2=16x同理,若对称轴为y轴则设常数a且常数a不等于0y=ax^2焦点为(0,a

已知抛物线的顶点在原点,对称轴为X轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是16

直线3x-4y-12=0当y=0时x=4直线与x轴交点为(4,0)由已知抛物线的顶点在原点,对称轴为X轴,焦点为(4,0)即P/2=4,P=8所以抛物线方程为y2=16x抛物线通就是过抛物线焦点且垂直

已知抛物线的顶点在原点,对称轴为X轴,抛物线上的点M(-2,m)到焦点...

由题设,可设抛物线方程为:y²=2px,(p<0)结合题设及抛物线定义可得:2+|p/2|=6且m²=-4p(p<0)解得:p=-8.m=±4√2抛物线方程:y²=-16

已知抛物线的顶点在原点,坐标轴为对称轴,且经过M(-2,-4),求此抛物线的方程

根据题意,可设抛物线为y=ax^2,将点M的坐标代入上式,得a=-1,所以该抛物线的方程为y=-x^2

已知一抛物线顶点在原点,焦点在直线3x-4y-12=0上,对称轴为坐标轴,求抛物线的标准方程

3x-4y=12上,x=0y=-3;y=0x=4焦点是(0,3),则x^2=12y;焦点是(4,0),则y^2=16x