已知抛物线y等于ax2 bx c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:15:34
已知抛物线y等于ax2 bx c
已知抛物线y=(x-m)的平方+2的顶点在y=2x上,则m等于?

y=(x-m)^2+2的顶点坐标为(m,2)所以(m,2)在y=2x上即2=2m所以m=1

已知抛物线y等于x的平方加kx减12k的平方.求证此抛物线于x轴总有两个交点

y=x^2+kx-12k^2y=0b^2-4ac=k^2+48k^2=49k^2>0k≠0时,方程总有2个实根即与X轴有2个交点

已知抛物线y=12x

∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于

已知[抛物线y^2=4x.过其焦点作一条斜率等于2的直线交抛物线于A,B两点,求三角形AOB的面积

F(1,0)所以直线是y=2x-22x-y-2=0则O到AB距离=|0-0-2|/√(2²+1²)=2/√5这是高AB是底边y²=(2x-2)²=4xx&sup

已知抛物线y=ax2的焦点到准线的距离为2,则直线y=x+1截抛物线所得的弦长等于______.

由题设抛物线y=ax2的焦点到准线的距离为2,∴12a=2,∴a=14∴抛物线方程为y=14x2,焦点为F(0,1),准线为y=-1,∴直线y=x+1过焦点F,联立直线与抛物线方程,消去x,整理得y2

已知直线经过抛物线y的平方等于4x的焦点F,且与抛物线相交与A,B两点

焦点F(1,0)AB:y=x-1得y^2=4(y+1)y1=2+2根号2,y2=2-2根号2S(OAB)=1/2OF(Y1-Y2)=1/2*1*4根号2=2根号2设直线是y=k(x-1)k^2(x^2

已知抛物线y=x^2-(m-3)x-m 试求,当m为何值时,抛物线与x轴的两个交点间距离等于3

M=0或2,用手机上的,过程不太好写,要过程的话,回去写给你.过程|x1-x2|=3(x1-x2)^2=9(x1+x2)^2-4x1x2=9因为x1+x2=-b/ax1*x2=c/a所以(m-3)^2

已知抛物线y等于ax的平方减去2x加c与它的对称轴相交于点A(1,4),求这条抛物线的函数关系式

y=ax^2-2x+c对称轴为:1/a又抛物线y与它的对称轴相交于点A(1,4),所以1/a=1求得a=1所以y=x^2-2x+c代入A点坐标得1-2+c=4得c=5所以抛物线的函数关系式为:y=x^

已知抛物线y等于ax平方加bx减二.tan角dba等于2

已知一元二次方程ax^2+bx+c=m的两个根是X1,X2,那么抛物线Y=ax^2+bx+c与直线Y=m的交点坐标是(x1,m)(x2,m)

已知抛物线 y等于ax平方减一 的焦点是坐标原点.则以抛物线与两坐标轴的三个交点为顶点的三

焦点?能说清楚点嘛再问:原题就是这样,我也不清楚再答:你能发图吗再答:能的话把图发来再问:再答:

已知抛物线y=ax2+bx+c

解题思路:利用图象上的点满足函数关系式来求出解析式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/

已知椭圆x平方分之4加y平方分之3等于1,抛物线y等于4x平方

由椭圆方程可知,a^2=4,b^2=3,所以c^2=1,所以焦点坐标是(c,0),(-c,0),即(-1,0)和(1,0),焦距=2x^2=1/4y类比x^2=2py焦点坐标(0,1/16),准线方程

已知抛物线y方等于四x直线x减y加三等于0求抛物线上的点到直线的最小距离

那个切点就是距离最短的点(1,2),Y撇的表达式就是抛物线上任一点的切线斜率

已知抛物线y=x2+2m-m2 即:y等于x的平方加2m减m的平方 1:抛物线过原点 2:抛物线

这应该是两个题1、已知抛物线y=x2+2m-m2即:y等于x的平方加2m减m的平方,抛物线过原点,求m的值抛物线过原点,有x=y=0所以0=0+2m-m²m(m-2)=0m=0或m=22、已

已知抛物线y 的平方等于2px(p大于0),点M (4,m )在抛物线上,若M到抛物线焦点的距离为6,求抛物线的方程

若M到抛物线焦点的距离为6,则4+p/2=6p=4抛物线的方程为y²=2px=8x注:抛物线上点M﹙a,b﹚到抛物线焦点的距离为h=a+p/2此公式可由抛物线的定义推出﹙也就是到焦点距离等于

已知抛物线Y=aX^2(a

y=ax^2,x^2=2*(1/2a)*y,即p=1/2a所以F(0,p/2)即F(0,1/4a),准线l:y=-p/2即y=-1/4a(1)直线L斜率不存在.易得只有一交点,不合题意(2)设直线L: