已知抛物线y方=4x截直线y=2k m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:36:06
X-Y-2=0y^2=4x联立解方程得A(4+2√3,2+2√3),B(4-2√3,2-2√3)中点坐标[(4+2√3+4-2√3)/2,(2+2√3+2-2√3)/2]即(4,2)
【1】证明:①∵点P(2,4)在抛物线y=(-1/2)x²+h上,∴4=(-1/2)×2²+h..∴h=6.∴抛物线y=(-1/2)x²+6.②∵点A,B均在该抛物线上,
第二问:存在.将直线AB向右上方平移到与抛物线相切,切点M与AB的距离最大,此时三角形MAB面积最大.设切线的方程为y=-x+a,由于相切,它和y=-x平方+4组成的方程组只能有一组解,即方程-x+a
设直线l:y-1=k(x+2)(由图象,k存在)所以y^2=4x,y-1=k(x+2)联立得:k^2x^2+(4k^2+2k-4)x+(2k+1)^2=0有一个公共点:△=0得:k=1/2或-1有两个
记线段端点为(x1,y1),(x2,y2)则依题意有y1^2=6x1①(两点在y2^2=6x2②抛物线上)x1+x2=4*2③(线段中点为y1+y2=3*2④M(4,3))典型的平方差法①-②,得(y
y^2≥0,又y^2=4x,因此4x≥0x≥0y^2=4x代入z=x^2+y^2/2+3z=x^2+y^2/2+3=x^2+2x+3=(x+1)^2+2当x=0时,z有最小值=1^2+2=3
已知抛物线的方程为4x-y²=0,求此抛物线的焦点坐标和准线方程y²=4x;2p=4,p=2,故焦点F(1,0);准线:x=-1.
4x-y²=0即标准方程为y²=4x根据抛物线的标准方程y²=2px可以得到2p=4故p=2抛物线的焦点(p/2,0)所以抛物线的焦点为(1,0)
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
解题思路:本题考查直线与圆锥曲线的关系,解决的关键在于联立方程,利用韦达定理,与条件“向量OM+ON与弦MN交于点E,若E点的横坐标为3/2”结合来解决问题,属于难题.解题过程:同学你好,如对解答还有
直线y=x-4和x轴的交点为A(4,0)直线y=x-4和y²=2x的交点为B(2,-2),C(8,4)用y作自变量更容易做.直线x=y+4,抛物线,x=y²/2画个草图可知,S=∫
抛物线y=-x²+4x+q的顶点坐标为[-b/(2a),(4ac-b²)/(4a)],其中a=-1,b=4,c=q-b/(2a)=-4/(-2)=2(4ac-b²)/(4
由题意,可设点M(m,m^2+2).N(2n,n).P(x,y).===>MN=(2n-m,n-m^2-2),4NP=4(x-2n,y-n)=(4x-8n,4y-4n),则由题设可得,4x-8n=2n
(2)将直线方程与抛物线方程联立,消去y:x²-4ax-4=0根据韦达定理:x1+x2=4a,x1x2=-4根据中点坐标公式P点坐标为((x1+x2)/2,(y1+y2)/2)y1+y2=a
关于y轴对称就是x换成-xy=-(-x)²-4(-x)+5=-x²+4x+5
l1是4x-3y+a=0则x=(3y-a)/4所以y²=4x=3y-ay²-3y+a=0y1+y2=3y1y2=ax=(3y-a)/4所以x1x2=(3y1-a)(3y2-a)/1
y=x^2-4x+m=(x-2)^2-4+m顶点为(2,m-4)代入直线得:m-4=-4X2+1m=-3A(2,-7)2)x^2-4x-3=0得x1=2+√7,x2=2-√7B(2+√7,0),C(2
设:双曲线方程为Y^2/【a^2】-X^2/【b^2】=1(a>0,b>0),与Y^2=4X联立得:4X/【a^2】-X^2/【b^2】=1,a^2*X^2-4b^2*X+a^2*b^2=0-----
(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x
y²=-4xy=2x+1(2x+1)²+4x=04x²+8x+1=0两根之和=-2两根之积=1/4两根之差=根号下(4-1)=根号下3y²+2(y-1)=0y&