已知抛物线y^2=x上一定点B(1.1)和两个P Q满住BP垂直PQ

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:38:58
已知抛物线y^2=x上一定点B(1.1)和两个P Q满住BP垂直PQ
已知抛物线y=-x^2/2,点A.B及P(2,-2)都在抛物线上,直线PA,PB的倾斜角互补

(1)采用逆推法设A、B的坐标分别为(a,-a^2/2)、(b,-b^2/2)AB的斜率为K=(-a^2/2+b^2/2)/(a-b)=-(a+b)/2当前只需要证明a+b为定值即可设PA、PB的斜率

已知抛物线经过原点O和X轴上另一点A,它的对称轴X=2与X轴交于点C,直线Y=2X-1经过抛物线上一点B(-2,M),且

(1)∵点B(-2,m)在直线y=-2x-1上,∴m=-2×(-2)-1=3.∴B(-2,3)∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0).设所求的抛物线对应函数关系式为y=a(

已知直线y=-2x-6分别交x轴,y轴于点A,B,抛物线y=ax^2+bx+c恰好也经过点A,B,且经过X轴上的另一点C

直线y=-2x-6分别交x轴,y轴于点A,B==>A(-3,0)B(0,-6)因为抛物线y=ax^2+bx+c恰好也经过点A,B经过X轴上的另一点C(1,0)9a-3b+c=0a=2c=-6====>

高中数学题 抛物线已知抛物线方程y^2=8x,点P(2,4),A(x1,y1),B(x2,y2)是抛物线上3点.若直线P

互补说明两个倾斜角相加等于180°(两直线与x轴的成角),也就是说两个倾斜锐角相等,所以两条直线的斜率的绝对值相等.设中点为(x0,y0),则y0=(y1+y2)/2,x0=(x1+x2)/2.y1&

抛物线切线方程已知抛物线方程为y^2=2px,抛物线上一点M(a,b),求过M点的抛物线的切线方程~

可设切线方程为y-b=k(x-a)联立切线与抛物线.y=k(x-a)+b则[k(x-a)+b]^2-2px=0整理得k^2x^2-(2k^2a+2p-2kb)x+k^2a^2+b^2-2kba=0因为

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴X=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,

看样子,此题应是初三的题.根据“线段垂直平分线的点到线段两端距离相等”,线段BE的垂直平分线与二次函数的交点就是符合题意的点,有两个.设直线BE:y=-2x-1与x轴交于F点,则F(-1/2,0)作直

已知抛物线的对称轴是直线x=3,顶点A在x轴上,且经过点B(1,-2),直线y=二分之一x+m与抛物线交于点B,C &n

由于B点在直线y=(1/2)x+m上,所以带入可以得出y=0.5x-2.5由于抛物线对称轴是x=3,且定点在x轴上,所以设方程式为y=A(x-3)^2将B点带入,可以得出y=-0.5(x-3)^2联立

已知抛物线y=x^2/4-(2-a)x+2a-1与直线y=x+1交于B、C两点,且点B在y轴上,抛物线的顶点为A

B在y轴上,则B为(0,1)代入的1=2a-1a=1y=x^2/4-x+1解得C点的坐标为(8,9)设D的横坐标为t,则D的坐标为(t,t+1)t∈(0,8)F的坐标为(t,t^2/4-t+1)所以l

抛物线及其标准方程点P是抛物线x^2=4y上的任意一点,过P作抛物线准线的垂线PB,垂足为B,另有一定点A(3,2),求

设F为焦点,则坐标为:F(0,1)|PB|=|PF|所以,|PA|+|PB|=|PA|+|PF|≥|AF|所以,P在AF连线上时,|PA|+|PB|最小,为|AF||AF|=√[(3-0)^2+(2-

已知抛物线y^2=4x的焦点是F,点A,B在抛物线上,如果AF向量=2FB向量,则丨AF丨=?

是不是还有条件:直线AB过抛物线的焦点F?若是这样的话,则利用:1/|FA|+1/|FB|=2/p=1则:1/|FA|+2/|FA|=1,得:|FA|=3

已知抛物线x=y^2-1,定点A(3,1),B为抛物线上任一点,点P在线段AB上,且有BP/PA=1/2,当点B在抛物线

设B(x1,y1)P(x,y)所以AB斜率为(y1-1)/(x1-1)PA=2/3AB由图像可知x=3+2/3*(x1-3)x1=3/2(x-1)y=1+2/3(y1-1)y1=3/2y-1/2B(x

已知直线l与抛物线y^2=8x交于B(x1,y1)C(x2,y2)两点,且y1y2=16,则直线l必经过对称轴上一定点A

y²=8xy1y2=16(y1)²=8x1(y2)²=8x2(y1y2)=64x1x2(16)²=64x1x2x1x2=4设A(0,b)直线方程y-0=k(x-

如图,已知抛物线经过原点O和x轴上另一点A,它的堆成轴为x=2,直线y=-2x-1经过抛物线上一点B(-2.m),且与y

(1)∵点B(-2,m)在直线y=-2x-1上,∴m=-2×(-2)-1=3.∴B(-2,3)∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0).设所求的抛物线对应函数关系式为y=a(

已知抛物线y=x^2-4x+3与x轴交于点AB(A左B右)与y轴交于C点P是抛物线对称轴上一点,且角APB=角ACB,求

由已知可知点C的坐标用余弦定理求∠ACB大小∠ACB=∠APB通过点A,B的坐标知道AB的长度,又知道∠P,△APB又是等腰三角形,AP=BP再对△APB用余弦定理就知道AP,BP的长度,然后就能求出

已知点M(-3,2)是坐标平面内一定点,若抛物线y²=2x的焦点为F,点Q是该抛物线上一

再答:当NQ与MQ共线时有最小值,为2.5再问:N是啥再答:没看我画的图,由抛物线定义,双曲线上的点到焦点的距离等于到准线的距离,N为Q与准线的交点再问:你画的很详细可我还是不太会写过程阿再问:555

已知抛物线y=2x-7都经过点(3,b).求抛物线的函数解析式.并判断点(-b,-ab)是否在该抛物线上.

题目有误,y=2x-7不可能是抛物线,应该把题目说清楚,才能帮你解答.估计是抛物线和y=2x-7都经过点(3,b).

抛物线y=ax平方;+2ax+3经过B、D、C三点,已知DC‖x轴,点A、B在x轴上,点C在y轴上,

BC=?再问:3根号2再答:1)y=ax(x+2)+3过点c(0,3)D(-2,3)对称轴x=-12)设B(x,0)BC=3根号2B(-3,0)a=-1y=-x(x+2)+33)两点之间线段最短即直线

已知抛物线y=x^2 -1上有一定点B(-1,0)和两个动点P、Q,当P在抛物线上运动时,BP垂直PQ,则Q点横坐标的取

分析:先假设P,Q的坐标,利用BP⊥PQ,可得斜率之积为-1,从而可得方程,再利用方程根的判别式大于等于0,即可求得Q点的横坐标的取值范围设P(t,t²-1),Q(s,s²-1)∵

如图,在平面直角坐标系xOy中,已知抛物线y=-x^2+2x+3与x轴交于A,B两点,点M在这条抛物线上,点P在y轴上,

1根据抛物线,求出A(-1,0)B(3,0)2设M(x0,y0)P(0,y)3PMAB构成平行四边形,用向量表示两组对边向量PA=(-1,-y),BM=(x0-3,y0);向量PB=(3,-y),AM

已知抛物线y=4/1X+1的图像如图所示.(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴于点B.若

这是2012漳州中考题,原题共三问,本题的解答如下:  江苏吴云超解答 供参考!