已知抛物线Y=X的平方 BX C与X轴交于AB两点,与Y轴交于点C
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:03:54
由抛物线y=ax平方+bx+c与抛物线y=2x平方的形状相同,得,a=2,由顶点坐标(2,-1),由顶点式,∴y=2(x-2)^2-1=2x^2-8x+7
说明bb-4ac大于等于0就可以了也就是说kk-4*(-3/4k)的平方解出来应该是4kk因为平方都是大于等于零的所以4kk也是大于等于零的所以永远有两个解
方法一,要和x轴有交点,则y=0,即x^2-(m^2+6)=0,所以x=-根号(m^2+6)或根号(m^2+6),m^2+6是正数,满足根号要求,所以符合
在y=x^2-3x-10中,令x=0,得y=-10∴抛物线与y轴的交点为(0,-10)令y=0得:x^2-3x-10=0,∴(x+2)(x-5)=0∴x=-2或5,即抛物线与x轴的交点为(-2,0)与
zheti这题三角形ABD不是等腰三角形,而是等边三角形,因为等腰不是条件,本来就等腰得,根据二次函数顶点公式得D坐标(1,-1/2+k);|k-1/2|/|x1-x2|=sin60度;(x1-x2)
y值相等,求出X,直接带入任意一个方程式
根据题意知道-b/2a=-1抛物线的形状与y=x平方+5相同知道a=1所以b=2抛物线与x轴的2个交点间距离为3知道y=x^2+2x+c=0的2解差为3,解解吧,很容易得到c=-5/4答案是y=x^2
焦点为(2,0)、联解Y平方=8X、Y=k(X+2)两个方程、得K平方(X+2)的平方=8X得到一个关于X的二元一次方程.(含K平方)当方程式有解时.利用维达定理X1+X2+4=Y1+Y2Y1=K(X
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
它过原点,则有C=0,它与X轴有两个交点,其中一个就是原点,另一个是(-b,0)|b|=3b=3,b=-3y=x*x+3x,y=x*x-3x
y=3/4(x-1)^2-3因为二次线系数3/4>0所以开口向上,对称轴x=1令x=0有y=3/4-3=-9/4,所以p点坐标(0,-9/4)令y=0有3/4(x-
关于y轴对称时偶函数∴令y=y,x=-x∴y=2/3x2-16/3x+8
函数y=x^2-|x|-12的图象与x轴交于A、B两点,另一抛物线y=ax^2+bx+,所以A点为(4,0)B点为(-4,0)(或者A点为(-4,0),B点为(4
再问:m>0,n满足的条件是
把Y=X+2M带进Y=X平方+2X+M-1得X+2M=X平方+2X+M-1,整理得X平方+X-(M+1)=0因为只有一个交点,所以X平方+X-(M+1)=0的△=0即1+4(M+1)=4M+5=0所以
由于AB=根号5,且A、B在原点的两侧,则将2分之根号5代入抛物线方程式,解得M=3(根号5-2)/2,不存在舍3的问题
由抛物线C:y²=8x易知F(2,0)y=k(x-2)化为x=y/k+2得出y²-8y/k-16=0(也可不化直接与y²=8x联立)设A(x1,y1)B(x2,y2)则y
方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(
解法找关键点----抛物线顶点抛物线C1y=-x^2-4x+5=-(x+2)^2+9顶点:(-2,9),开口:向下抛物线C2与抛物线C1关于X轴对称:顶点:(-2,-9),开口:向下C2的函数解析式为
c=0令y=0,求解方程就行了