已知抛物线y=x² px q与x轴只有一个交点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:50:20
已知抛物线y=x² px q与x轴只有一个交点
已知a,b为抛物线y=(x-c)(x-c-d)-2与x轴焦点的横坐标,a

若果是填空或选择题,建议用解析几何法,画图,如图:无论d>0或d<0,都有a<c<d,因而|a-c|+|c-b|=b-a;如果是解答题,则不建议采用解析几何法,可以解答如下:∵

已知抛物线y=4x平方-11x-3求他与X轴Y轴焦点坐标

当x=0时,y=-3所以他与y轴交点坐标是(0,-3)当y=0时4x^2-11x-3=0(4x+1)(x-3)=0x=-1/4x=3所以他与X轴交点坐标是(-1/4,0)和(3,0)

已知P(x,y)是抛物线y2=-8x的准线与双曲线x

由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y

已知抛物线y=12x

∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于

已知抛物线Y=二分之一X平方-X+K与X轴有两个交点

zheti这题三角形ABD不是等腰三角形,而是等边三角形,因为等腰不是条件,本来就等腰得,根据二次函数顶点公式得D坐标(1,-1/2+k);|k-1/2|/|x1-x2|=sin60度;(x1-x2)

已知抛物线Y=X的平方+2X+m-1 (1)若抛物线与x轴只有一个交点,求m的值 (2)若抛物线与y=x+2m只有一个交

(1)抛物线与x轴仅有一个交点,方程x²+2x+m-1=0判别式=02²-4(m-1)=0整理,得4m=8m=2(2)y=x+2m代入y=x²+2x+m-1x+2m=x&

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

已知抛物线y=3x²-6x+与x轴有两个不同的交点

x轴是y=0即方程y=3x²-6x+c=0有两个不同的根所以△>036-12c>0c

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知抛物线y=x平方+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式

它过原点,则有C=0,它与X轴有两个交点,其中一个就是原点,另一个是(-b,0)|b|=3b=3,b=-3y=x*x+3x,y=x*x-3x

已知抛物线y=x²+bx+c过原点,抛物线与x轴两交点间的距离为3,求抛物线的解析式

过(0,0)0=0+0+cc=0y=x²+bx=x(x+b)=0x=0,x=-b所以两点距离是|-b-0|=3b=±3所以y=x²+3x或y=x²-3x

已知抛物线y=四分之三(x-1)的平方-3 1.写出抛物线的开口方向,对称轴 2.设抛物线与y轴的

   y=3/4(x-1)^2-3因为二次线系数3/4>0所以开口向上,对称轴x=1令x=0有y=3/4-3=-9/4,所以p点坐标(0,-9/4)令y=0有3/4(x-

已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若

由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0

已知抛物线y方=4x及其焦点,求圆心在抛物线上,且与x轴及抛物线的准线都相切的圆标准方程

1楼你的抛物线方程看错了.因为与x轴及抛物线的准线都相切,且圆心到准线的距离等于到焦点的距离,所以焦点在圆上,所以焦点就是与x轴的切点.所以圆心为(1,2)或者(1,-2),半径为2.所以方程为(x-

已知:抛物线y=x2+5x+m与x轴交于ab两点,p是抛物线顶点

抛物线定点p(-5/2,m-25/4)a+b=-5ab=m(a-b)²=(a+b)²-4ab=25-4m>0m

已知抛物线y=-x^2+mx-m+2.求证:这个抛物线的图象与x轴有两个交点.

与x轴交点,就是y=0,有1个交点就是b^2-4ac=0,两个交点b^2-4ac>0没有交点就是b^2-4ac0则这个抛物线的图象与x轴有两个交点.

已知抛物线y=x^2+bx+c与x轴只有一个交点

(1)因为抛物线y=x的平方+bx+c与x轴只有一个交点为A(2,0)所以Δ=b^2-4ac=0且A为抛物线的顶点所以顶点横坐标是2所以得方程组:{b^2-4c=0{-b/2=2解得:b=-4,c=4

已知抛物线y=1/2x²-x+k与x轴有两个不同的交点

AB=2√(1-2K)是因为如果把y=1/2x²-x+k看成一个二次方程1/2x²-x+k=0,那么AB两点就是方程的二根x1,x2,故AB=lx2-x1l=√(x1+x2)^2-

已知抛物线y²=2px的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线交与A,B两点,

解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4