已知抛物线y=x^2-bx 4(b>2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:50:10
(1)令x=0,ax5+bx4+cx3+dx2+ex+f=f=-1.(2)令x=1,ax5+bx4+cx3+dx2+ex+f=a+b+c+d+e+f=1,∴a+b+c+d+e=2①;(3)令x=-1,
做此题时首先要看下抛物线每个点的情况,就做出来了.点(x,y)关于x轴的对称点是(x,-y),所以可得关于Y轴的抛物线是-y=x^-2x-3y=-x^+2x+3点(x,y)关于y轴的对称点是(-x,y
∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于
∵2ax4+5ax3-13x2-x4+2021+2x+bx3-bx4-13x3=(2a-b-1)x4+(5a-13+b)x3-13x2+2x+2021,又∵此多项式为二次多项式,∴2a−b−1=05a
∵抛物线是二次函数的图象,∴m2-4m-3=2,解得m=-1或m=5,又顶点在x轴下方,∴m-5<0,即m<5,∴m=-1.
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
第一个是与什么有交点?要是与X轴,就x^2+ax+a+2=0,求出x的2个值.两点距离最短,就只有1个交点,根据b^2-4ac=0,得出a^2-4(a+2)=0,得出a.2,根据y=x^2-(k+1)
由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0
F(1,0)由于AB不可能平行y轴,可设AB:ky=x-1(x-1)^2=y^2k^2=4xk^2x^2-(2+4k^2)x+1=04=x1+x2=2+4k^2k=根号2/2x^2-4x+1=0|x1
将抛物线配方成:Y=(X-1)²当X=1时,函数值最小,为0因此顶点坐标为(1,0)
∵y=-x²+2x+2=-(x-1)²+3∴抛物线的开口向下,对称轴是直线X=1在对称轴的右侧,Y随X的增大而减小.由x1>x2>1,可知点A,B都在对称轴的右侧,则y1
1、y=x²-2x-3 =(x-3)(x+1)当y=0时,x=3或x=-1当x=0时,y=-3所以a、b坐标为(-1,0)和(3,0)c坐标(0,-3)2、S△abc=(1/2)*
(1)当a=-1时,y=-x2+x+2=-(x-12)2+94∴抛物线的顶点坐标为:(12,94),对称轴为x=12;(2)∵代数式-x2+x+2的值为正整数,-x2+x+2=-(x-12)2+214
∵(x+2)5=ax5+bx4+cx3+dx2+ex+f,令x=-2,有0=-32a+16b-8c+4d-2e+f①令x=2,有1024=32a+16b+8c+4d+2e+f②由②+①有:1024=3
①∵令x=0,y=-2(0+1)2+8=6,∴抛物线与y轴的交点坐标为(0,6);②∵令y=0,则-2(x+1)2+8=0,解得x1=1,x2=-3,∴抛物线与x轴的交点坐标为:(1,0),(-3,0
把-1/2提在前面当作a,然后一步步化成它需要的形式,楼上回答很清楚了.由于a小于0,开口向下,无最小值,只有最大值,当横坐标等于对称轴时极为最大值.又第一问中可看出对称轴为x=1可以自己做出一个大致
(1)∵抛物线y=-x2+2x+2中,a=-1,b=2,c=2,∴该抛物线的对称轴x=-b2a=-2−2=1,定点的纵坐标为:4ac−b24a=−8−4−4=3,∴该抛物线的对称轴是x=1,顶点坐标是
(1)∵y=-x2+2x+2=-(x2-2x+1-1)+2=-(x-1)2+3,∴抛物线y=-x2+2x+2的对称轴为:x=1,顶点坐标为(1,3);(2)∵抛物线y=-x2+2x+2 的对
(1)(x+1)5,=(x+1)2×(x+1)2×(x+1),=(x2+2x+1)(x2+2x+1)(x+1),=(x4+4x3+6x2+4x+1)(x+1),=x5+5x4+10x3+10x2+5x