已知抛物线y=x2-(4k 1)x 2k-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:22:45
(1)y=-3x2+12x-8=-3(x2-4x)-8=-3(x-2)2+12-8=-3(x-2)2+4,函数y=-3x2+12x-8的对称轴为x=2,顶点坐标为(2,4).(不用配方法不给分)(2分
用顶点式比较简单因为顶点是(1,-4)所以解析式为y=(x-1)^2-4当y=0时(x-1)^2-4=0(x-1)^2=4x=3或-1所以抛物线与x轴的交点为(-1,0)和(3,0)当x=0时y=-3
关于x轴对称的抛物线,也就是把C1:y=x2-4x-3里面的y变成-y,即-y=x2-4x-3,C2的解析式是y=-x2+4x+3
(1)抛物线y=x^2①的焦点F是(0,1/4),y'=2x,设AB:y=kx+1/4,代入①,x^-kx-1/4=0,设A(x1,x1^),B(x2,x2^),P(x,y),x1≠x2,则x1+x2
因M,N两点均在抛物线x²=4y上,∴可设:M(2m,m²),N(2n,n²)又三点M,F(0,1),N共线.∴由三点共线条件可得:mn=-1.由抛物线定义,可得:|MF
Y=x2+KX+91、当K为何值时,对称轴为Y轴对称轴是Y轴则,k=02、当K为何值时,抛物线与X轴有两个交点与X轴有两个交点则△=k^2-36>0即k>6或k
首先M点在抛物线上.代入可求出抛物线的方程y=x^2/4求导在M点切线斜率为k=1所以直线方程为y=x-1与X轴交点为(1,0)所以C=12.这个化简有点麻烦.设M(x1,y1)可以得到p的表达式.求
焦点为:(1,0)设AB方程为:y=k(x-1)y1+y2=k(x1+x2)-2k=6k-2k=4ky1^2=4x1,y2^2=4x2y1^2-y2^2=4(x1-x2)(y1-y2)/(x1-x2)
y^2=4xp=4/4=1A到焦点距离即为A到准线的距离,B同理准线方程为x=-1A到准线距离为X1+1B到准线距离为X2+1因此AB=X1+X2+1+1=5
抛物线y=-x²+4x+q的顶点坐标为[-b/(2a),(4ac-b²)/(4a)],其中a=-1,b=4,c=q-b/(2a)=-4/(-2)=2(4ac-b²)/(4
好的,不好意思,才看到啊
y=x2-4x+3=x2-4x+4-4+3=x2-4x+4-1=(x-2)2-1,所以抛物线的对称轴为直线x=2,顶点坐标为(2,-1).再问:它的二次函数与交点坐标是?
∵y=x2+2mx+n=(x+m)2-m2+n,∴抛物线的顶点坐标为(-m,-m2+n),∴-12×(-m)+12=-m2+n,即2m2+m-2n+1=0①,∵抛物线过点(1,3),∴2m+n+1=3
(1)∵抛物线y=x2-2kx+3k+4顶点在y轴上,∴-2k=0,解得:k=0;(2)∵抛物线y=x2-2kx+3k+4顶点在y轴上,∴b2-4ac=0,∴(-2k)2-4×1×(3k+4)=0,解
(1)∵抛物线y=-x2+2x+2中,a=-1,b=2,c=2,∴该抛物线的对称轴x=-b2a=-2−2=1,定点的纵坐标为:4ac−b24a=−8−4−4=3,∴该抛物线的对称轴是x=1,顶点坐标是
(1)∵y=-x2+2x+2=-(x2-2x+1-1)+2=-(x-1)2+3,∴抛物线y=-x2+2x+2的对称轴为:x=1,顶点坐标为(1,3);(2)∵抛物线y=-x2+2x+2 的对
方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(
答:(1)抛物线经过点A(0,4),代入抛物线方程得:c=4.抛物线的对称轴为直线x=2,代入抛物线对称轴方程:X=-b/2a,则,b=4,那么,抛物线的解析式为:y=-x2+4x+4..(2)要构成
形状相同a=4y=4(x+1/2)²+3=4x²+4x+4选A再问:可以详细点么==解题思路说下好吧有点不明白再答:哪里不懂再问:就是如果它们形状相同有哪些结论呢还有a为什么等于4