已知抛物线y=-三分之二x的平方 三分之四

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 02:09:02
已知抛物线y=-三分之二x的平方 三分之四
已知P(x,y)是抛物线y2=-8x的准线与双曲线x

由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y

已知抛物线y=x平方-2x-3.则此图像关于x轴的抛物线是?关于y轴的抛物线是?关于原

做此题时首先要看下抛物线每个点的情况,就做出来了.点(x,y)关于x轴的对称点是(x,-y),所以可得关于Y轴的抛物线是-y=x^-2x-3y=-x^+2x+3点(x,y)关于y轴的对称点是(-x,y

已知抛物线y=12x

∵抛物线y=12x2+bx经过点A(4,0),∴12×42+4b=0,∴b=-2,∴抛物线的解析式为:y=12x2-2x=12(x-2)2-2,∴抛物线的对称轴为x=2,∵点C(1,3),∴作点C关于

已知抛物线y=负三分之二x的平方+三分之四x+2的图像与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴与x轴交于点D

1)整理:y=(-2/3)x²+(4/3)x+2=(-2/3)(x²-2x-3)=(-2/3)(x-3)(x+1)所以x轴交点坐标为(-1,0),(3,0)从下文看,B(3,0)当

已知抛物线C1:y=x2-4x-3,求关于x轴对称的抛物线C2的解析式

关于x轴对称的抛物线,也就是把C1:y=x2-4x-3里面的y变成-y,即-y=x2-4x-3,C2的解析式是y=-x2+4x+3

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

已知抛物线y=x²+kx+k+3 抛物线的顶点在x轴上 求k

y=x²+kx+k+3=(x+k/2)^2+k+3-(k^2/4)由题意-kk/4+k+3=0kk-4k-12=0(k-6)(k+2)=0所以k=6或者k=-2

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知抛物线C1:y=三分之二x²+三分之六x+8与抛物线c2关于y轴对称求抛物线c2的解析式

C1:y=(2/3)x^2+(6/3)x+8=(2/3)*(x+1.5)^2+(19.5/3)C2:y=(2/3)*(x-1.5)+(19.5/3)=(2/3)x^2-(6/3)x+8

已知抛物线顶点抛物线顶点在坐标原点抛物线焦点与椭圆x²/16+y²/15=1的左焦点相同抛物线上求一

(1)设抛物线的解析式为y=kx2+a∵点D(2a,2a)在抛物线上,4a2k+a=2a∴k=∴抛物线的解析式为y=x2+a(2)设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,在Rt△GD

已知抛物线y=x 2-2x+1(1)球抛物线的顶点坐标

将抛物线配方成:Y=(X-1)²当X=1时,函数值最小,为0因此顶点坐标为(1,0)

已知抛物线y=-x方-4x+5求已知抛物线关于y轴对称的图像的关系式

关于y轴对称就是x换成-xy=-(-x)²-4(-x)+5=-x²+4x+5

已知抛物线y=x2+3x-5,求此抛物线在x=3处的切线方程

求导的y'=2x+3在x=3k=9所以切线为y-13=9(x-3)

已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式

控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同

已知抛物线Y=-X2 (是X的平方)

方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(

已知抛物线的焦点是圆x^2+y^2+4y=0的圆心,求抛物线的方程

x^2+y^2+4y=0x^2+(y+2)^2=4圆心为(0,-2)则抛物线焦点为(0,-2)位于y轴负半轴.则抛物线的方程为:x^2=-8y在抛物线x2=-2py中,焦点是(0,-p/2),准线的方

已知抛物线y=x^ +kx+3 ,根据下列条件求抛物线的解析式

(1)抛物线的顶点在y轴上x1+x2=-k=0k=0抛物线的解析式y=x^2+3(2)抛物线的顶点在x轴上与x轴只有一个交点k^2-12=0k=±2√3抛物线的解析式y=x^2±2√3x+3(3)抛物

已知抛物线与X周的两个交点的横坐标为-1,3,与Y轴交点纵坐标为副三分之二.确定抛物线的解析式.

据题意得:抛物线交X轴于(-1,0)(3,0)交Y轴于(0,-2/3)设解析式为y=a(x+1)(x-3)则-2/3=a*1*(-3)∴a=2/9∴抛物线解析式为y=2/9(x+1)(x-3)要化简的