已知抛物线y=-x²-2x 3与x轴交与a,b两点,将这条抛物线的顶点记为c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:40:49
已知抛物线y=-x²-2x 3与x轴交与a,b两点,将这条抛物线的顶点记为c
已知曲线f(x)=x3(x的3次方)+x²+x+3在x=-1处的切线恰好与抛物线y=2px²(p>0

已知曲线f(x)=x^3+x^2+x+3在x=-1处的切线恰好与抛物线y=2px^2(p>0)相切,则过该抛物线的焦点且垂直于对称轴的直线与抛物线相交所得的线段长为()A.4B.1/4C.8D.1/8

已知抛物线y^2=4X上有三点,A(X1,Y1),B(X2,Y2),C(X3,Y3),斜率为Kab,Kac,Kbc.

答:抛物线y^2=4x中,x>=0,所以X1取最小值0,Y1=0点A(0,0),B(X2,Y2),C(X3,Y3)Kab=Y2/X2=4/Y2Kac=Y3/X3=4/Y3Kbc=(Y3-Y2)/(X3

已知A(x1,y1),B(x2,y2),C(x3,y3)是抛物线y^2=2x上三点,若三角形ABC的重心是(3,-1)

因为重心是(3,-1)所以x1+x2+x3=9y1+y2+y3=-3……式1用y^2=2x消去x得y1^2+y2^2+y3^2=18……式2式1俩边平方得(y1+y2+y3)^2=9y1^2+y2^2

已知抛物线y=-2(x-1)²+8 求 抛物线与y轴交点坐标 抛物线与x轴的两个交点间的距离

已知抛物线y=-2(x-1)²+8求抛物线与y轴交点坐标抛物线与x轴的两个交点间的距离抛物线与y轴交点的横坐标为x=0,代入已知抛物线y=-2(x-1)²+8得Y=-2(0-1)&

已知抛物线Y=X2+(2K+1)X-K2+K 求证:此抛物线与X轴总有两个不同的交点 此抛物线上

令y=0根的判别式△=(2k+1)^2-4(k-k^2)=8k^2+1>0所以此抛物线与X轴总有两个不同的交点

已知抛物线y^2=2px(p>0)的焦点F与双曲线x^2-y^2/x=1的右顶点重合,抛物线与直线

题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知抛物线C1:y=x²-2x-3,抛物线C2与抛物线C1关于X轴对称,若

由抛物线C1可得出C1经过点(1,-4)(-1,0)(3,0)因为C1与C2关于x轴对称所以C2讲过点(1,4)(-1,0)(3,0)所以C2为y=-x²+2x+3因为直线y=x+b(b>0

已知抛物线y=x²+2x+m-1,若抛物线与直线y=x+2m只有一个交点,求M的值

所谓只有一个交点,就是x²+2x+m-1=x+2m的方程式x只有一个解.x²+2x+m-1=x+2m则(x+1/2)²=m+5/4x+1/2=+/-(m+5/4)的开平方

已知曲线f(x)=x3+x2+x+3在x= -1处的切线恰好与抛物线y^2=2px(p>0)相切 求抛物线方程和切点坐标

f(x)=x3+x2+x+3f'(x)=3x^2+2x+1在x=-1处的切线斜率=2x=-1f(x)=2(-1,2)切线方程y-2=2(x+1)=2x+2y=2x+4带入y^2=2px4x^2+16x

初三数学题 已知一条抛物线与抛物线y=x²-2x-4关于x轴对称 这条抛物线所表示函数的关系式为?

-y=x²-2x-4移项得y=-x²+2x+4关于x轴对称就是x相等.再问:如果关于y轴对称呢再答:y相等,x添个负号搞不清就取几个特殊值画函数图

已知抛物线y=-x^2+mx-m+2.求证:这个抛物线的图象与x轴有两个交点.

与x轴交点,就是y=0,有1个交点就是b^2-4ac=0,两个交点b^2-4ac>0没有交点就是b^2-4ac0则这个抛物线的图象与x轴有两个交点.

已知抛物线c1:y=2/3x+16/3x+8与抛物线c2关于y轴对称,求抛物线c2的解析式

控制开口大小不变,即二次项系数不变;对称轴关于y轴对称,所以将一次项系数符号变为负,顶点位置对称,所以最低点y轴坐标相同

已知抛物线y=x^2+bx+c与x轴只有一个交点

(1)因为抛物线y=x的平方+bx+c与x轴只有一个交点为A(2,0)所以Δ=b^2-4ac=0且A为抛物线的顶点所以顶点横坐标是2所以得方程组:{b^2-4c=0{-b/2=2解得:b=-4,c=4

已知抛物线y²=2px的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线交与A,B两点,

解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4