已知抛物线y=-2px上的点到直线x y-1=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:18:50
已知抛物线y=-2px上的点到直线x y-1=0
已知抛物线y的平方=2px(p大于0),点M(4,m)在抛物线上,若点M到抛物线焦点的距离为6.

设焦点为F∵d=6,FM为过焦点的线段,∴x+p/2=6∴p=4∴抛物线方程为y²=8x又因为M在抛物线上,∴M(4,4√2)

抛物线切线方程已知抛物线方程为y^2=2px,抛物线上一点M(a,b),求过M点的抛物线的切线方程~

可设切线方程为y-b=k(x-a)联立切线与抛物线.y=k(x-a)+b则[k(x-a)+b]^2-2px=0整理得k^2x^2-(2k^2a+2p-2kb)x+k^2a^2+b^2-2kba=0因为

已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点的距离为5.设直线y=kx+b与抛物线C交于两点A(X1,Y

因为横坐标为4的点到焦点距离与到x=-p/2距离相等(抛物线定义),所以求得p=2.抛物线方程为y^2=4x.与直线方程联立消去x得到关于y的一元二次方程y^2-4y/k+4b/k=0.由韦达定理可知

已知抛物线C:y^2=2px(p>0)上横坐标为4的点到焦点距离为5 设直线y=kx+b与抛物线C交于A(X1,Y1),

准线为x=-p/2根据抛物线定义x+p/2=5题目中x=4p/2=1p=2所以抛物线方程:y²=4x后边还有什么问题,请补充或者追问

已知点A(m,3)在抛物线y^2=2px(p>0)上,它到抛物线焦点F的距离为5若m>0求抛物线方

y^2=2px,准线是x=-p/2根据定义得,点A到焦点的距离=点到准线的距离=xA+p/2=m+p/2=5m=5-p/2又2pm=3^2=9m=9/(2p)5-p/2=9/(2p)10p-p^2=9

已知抛物线y^2=2px(p〉0)上的点M到定点A(3,2)和焦点F的距离之和的最小值为5.求此抛物线的标准方程.

抛物线焦点F(p/2,0)准线:x=-p/2|MA|+|MF|=|MA|+点M到准线的距离》点A到准线的距离所以3+p/2=5p=4抛物线标准方程为y^2=8x

已知抛物线y^2=2px(p>0)上纵坐标为1的点到焦点的距离为P,过点p(1,0)做斜率为k的直线l交抛物线与A,B两

已知抛物线y^2=2px(p>0)有一内接直角三角形,直角顶角是原点,一直角边的方程为y=2x,斜边长为5(根号3),求这抛物线的方程.因为一条直角边为y=2x,且直角顶点为原点所以,另一条直角边为y

已知点P(6,y)在抛物线 y^2=2px(p>0)上,F为抛物线焦点,若 PF=8,则点F到抛物线

点P(6,y)在抛物线y^2=2px(p>0)上,准线为l:x=-p/2,P到焦点的距离等于P到准线的距离∵PF=8∴6-(-p/2)=8∴p=4∴F到准线距离为p=4

已知抛物线y^2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过

(1)∵A的横坐标是4,抛物线准线x=-p\2,A到抛物线准线的距离d=5∴d=4+p\2=5,得p=2即y^2=4x(2)令x=4,则y=4(∵A是位于x轴上方的点),A(4,4)∵AB⊥y轴∴B(

已知抛物线C:y^2=2px上一点p(4,m)到其焦点F的距离为5,求实数m和p.已知点Q(3,0),点A在抛物线上,问

由4+p/2=5得,p=2,则抛物线C:y^2=4x,把P点坐标带入,则m=4倍根号2或-4倍根号2假设存在存在垂直于x轴的直线l:x=t被以AQ为直径的圆截得的弦长CD为定值,设A(x,y),则圆心

已知抛物线y平方=2px(p>0)上的一点A(1,a)到它的焦点F的距离为2,其中a>0⑴求抛物线的方程及点A的坐标 .

抛物线y平方=2px(p>0),准线是x=-p/2.根据定义,点A(1,a)到它的焦点F的距离=点A到准线的距离=2,即:1-(-p/2)=2p=2故方程是y^2=4x.A坐标是(1,2)

已知抛物线yˇ2=2px(P>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离为5

(1)抛物线y2=2px的准线的方程为,y=-p/2故,p=2.所以抛物线方程为y2=4x经过(2,0)且倾斜角为135度的直线方程为y=-x+2,联立抛物线方程有x^2-8x+4=o求得BC两点可求

已知抛物线y平方=2px(p>0)的焦点为F 点是抛物线上横坐标为且位于x轴上方 点A到抛物线焦点距离为5 求抛物线方程

点A到焦点的距离等于到准线的距离,而y^2=2px准线方程为x=-1/2p;所以1/p+4=5;解之得p=2;抛物线方程为y^2=4x.

已知抛物线y 的平方等于2px(p大于0),点M (4,m )在抛物线上,若M到抛物线焦点的距离为6,求抛物线的方程

若M到抛物线焦点的距离为6,则4+p/2=6p=4抛物线的方程为y²=2px=8x注:抛物线上点M﹙a,b﹚到抛物线焦点的距离为h=a+p/2此公式可由抛物线的定义推出﹙也就是到焦点距离等于

已知抛物线C:y^2=2px(p>0)的焦点为F,其准线为l,P(1/2,m)是抛物线C上的一点,点P到直线l的距离等于

按抛物线的定义,P与准线的距离等于与焦点F(p/2,0)的距离,PO=PF, 即P为以OF为底的等腰三角形的顶点,P到OF的垂线平方OF,所以OF=P的横坐标的2倍,即p/2=1,p=2y&

已知抛物线y^2=2px(p>0),其焦点为F,且点(2,1)到抛物线准线的距离为3.求抛物线的方程

准线方程为x=-p/2点(2,1)到准线x=-p/2的距离为:2+p/2=3所以p=2抛物线方程为:y^2=4x.

高中数学向量题1.已知点A`B`C均在以F点的抛物线y^2=2px(p>)上,点A(m,8)到其准线的距离是10,且点M

点A(m,8)到其准线的距离是|x+p/2|=|m+p/2|=10又∵2mp=64,p>0,m≥0∴m1=8,p1=4;m2=2,p2=16∴抛物线的方程为y²=8x或y²=32x

高三一道抛物线小题,已知抛物线y^2=2px的焦点F到其准线的距离为8,抛物线的准线与x轴交点为K,点A在抛物线上,且|

由A作AH垂直准线于H,AH=AF(定义),且AF=AH=二分之根号2AK,AH垂直KH,显然直角三角形型解出HK=AH,因为p=8(负的不管了)有定义设A(x,x+4),代入原式,解出A点,世界从此