已知抛物线cy 2=2px上的点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:14:40
已知抛物线cy 2=2px上的点
已知抛物线y的平方=2px(p大于0),点M(4,m)在抛物线上,若点M到抛物线焦点的距离为6.

设焦点为F∵d=6,FM为过焦点的线段,∴x+p/2=6∴p=4∴抛物线方程为y²=8x又因为M在抛物线上,∴M(4,4√2)

抛物线切线方程已知抛物线方程为y^2=2px,抛物线上一点M(a,b),求过M点的抛物线的切线方程~

可设切线方程为y-b=k(x-a)联立切线与抛物线.y=k(x-a)+b则[k(x-a)+b]^2-2px=0整理得k^2x^2-(2k^2a+2p-2kb)x+k^2a^2+b^2-2kba=0因为

已知点P(6,y)在抛物线 y^2=2px(p>0)上,F为抛物线焦点,若 PF=8,则点F到抛物线

点P(6,y)在抛物线y^2=2px(p>0)上,准线为l:x=-p/2,P到焦点的距离等于P到准线的距离∵PF=8∴6-(-p/2)=8∴p=4∴F到准线距离为p=4

已知抛物线y^2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过

(1)∵A的横坐标是4,抛物线准线x=-p\2,A到抛物线准线的距离d=5∴d=4+p\2=5,得p=2即y^2=4x(2)令x=4,则y=4(∵A是位于x轴上方的点),A(4,4)∵AB⊥y轴∴B(

已知抛物线C:y^2=2px上一点p(4,m)到其焦点F的距离为5,求实数m和p.已知点Q(3,0),点A在抛物线上,问

由4+p/2=5得,p=2,则抛物线C:y^2=4x,把P点坐标带入,则m=4倍根号2或-4倍根号2假设存在存在垂直于x轴的直线l:x=t被以AQ为直径的圆截得的弦长CD为定值,设A(x,y),则圆心

已知抛物线y2=2px 的焦点为F,点M在抛物线上 求MF中点p的轨迹方程

设P(x,y),F(p/2,0),设M(yo^2/2p,yo),所以x=(p^2+yo^2)/4p,y=yo/2,所以y^2=px-p^2/4,这就是轨迹方程

(2012•湛江模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线

(1)抛物线y2=2px的准线为x=−p2,于是4+p2=5,∴p=2.∴抛物线方程为y2=4x.(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2),又∵F(1,0),∴kFA=43;

已知抛物线yˇ2=2px(P>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离为5

(1)抛物线y2=2px的准线的方程为,y=-p/2故,p=2.所以抛物线方程为y2=4x经过(2,0)且倾斜角为135度的直线方程为y=-x+2,联立抛物线方程有x^2-8x+4=o求得BC两点可求

已知点C为抛物线y2=2px(p>0)的准线与x轴的交点,点F为焦点,点A、B是抛物线上的两个点.若.FA+.FB+2.

设A(x1,y1),B(x2,y2),抛物线y2=2px(p>0)的准线与x轴的交点C(-p2,0),焦点F(p2,0)∵.FA+.FB+2.FC=.0,∴(x1−p2,y1)+(x2−p2,y2)+

已知抛物线y平方=2px(p>0)的焦点为F 点是抛物线上横坐标为且位于x轴上方 点A到抛物线焦点距离为5 求抛物线方程

点A到焦点的距离等于到准线的距离,而y^2=2px准线方程为x=-1/2p;所以1/p+4=5;解之得p=2;抛物线方程为y^2=4x.

已知抛物线的方程为y2=2px(p>0),且抛物线上各点与焦点距离的最小值为2,若点M在此抛物线上运动,点N与点M关于点

由于抛物线上各点与焦点距离的最小值为2,∴p2=2,∴2p=8,∴抛物线的方程为y2=8x设点N((x,y),则M(2-x,2-y),代入抛物线方程得:(y-2)2=-8(x-2),故选C.

已知抛物线y2=2px(p>0),点M(4,m)在抛物线上,若点M到抛物线焦点的距离为6.求抛物线方程及实数m的值

点M到焦点的距离为6则M到准线的距离也是6准线是x=4-6=-2=-p/2p=4抛物线方程是y^2=8xx=4时y=±4√2所以m=±4√2

抛物线的题目已知抛物线Y^2=2px上一动点p,抛物线内一点A(3,2)F为焦点且丨PA丨+丨PF丨的最小值为7/2求抛

丨PA丨+丨PF丨的最小值为7/2,根据抛物线定义,过A向抛物线的准线做垂线段,得p/2+3=7/2,∴p=1抛物线方程为y²=2x;此时P(2,2)

已知M(a,0)为抛物线y2=2px(p>0)对称轴上一定点,在抛物线上求一点N,使得MN的绝对值最小

设点N的坐标为(x',y'),则y’²=2px’.|MN|=√[(x'-a)²+y'²]=√[(x-a)²+2px']=√[x'²+(2p-2a)x’

已知A、B、C是抛物线y2=2px上的三点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D、E两点,求证:抛物线

抛物线参数方程为y=t,x=′t22p,设B(t212p,t1),C(t212p,-t1),A(t222p,t2)所以求得AC的直线方程为y-t2=(t2−t1)(x−t222p)t222p−t212

高三一道抛物线小题,已知抛物线y^2=2px的焦点F到其准线的距离为8,抛物线的准线与x轴交点为K,点A在抛物线上,且|

由A作AH垂直准线于H,AH=AF(定义),且AF=AH=二分之根号2AK,AH垂直KH,显然直角三角形型解出HK=AH,因为p=8(负的不管了)有定义设A(x,x+4),代入原式,解出A点,世界从此