已知实数x,y满足x² y² 2x-4y 1=0,求下列各式的最大值和最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:03:29
|x+y|²
m=6z=x-y过(0,3)时z最小,(0,3)在直线x+2y=m上,所以m=6.
x²+y²-xy+2x-y+1=0x²+2x+1-y(x+1)+y²=0(x+1)²-y(x+1)+y²=0(x+1-y/2)²+
由已知条件得:x2−1≥01−x2≥0x−1≠0,∴x=-1,y=3,∴y=(-1)3=-1.
根号(x+y-8)+根号(8-x-y)=根号(3x-y-4)+根号(x-2y+7),根据二次根式有意义得:X+Y-8≥0,8-X-Y≥0,∴X+Y≥8,X+Y≤8,∴X+Y=8,左边为0,右边两个非负
x^2+2y^2+2x+2=2xy(x-y)^2+y^2+2x+2=0(x-y)^2+(y+1)^2+2x-2y+1=0(x-y)^2+2(x-y)+1+(y+1)^2=0[(x-y)+1]^2+(y
设x+y=k,代入x2+y2+2x=0x2+(k-x)2+2x=0x2+k2-2kx+x2+2x=02x2-(2k-2)x+k2=0判别式=(2k-2)2-4*2k2>=04k2-8k+4-8k2>=
由已知1x+1y=(1x+1y)(x+2y)×14=(3+2yx+xy)×14≥(3+2 2yx×xy)×14=3+224.等号当且仅当2yx=xy时等号成立.∴1x+1y的最小值为3+22
当x=1,y=3时取最小值:2(1)在坐标系中画出满足条件2
数形结合x^2+y^2-4x+1=0是一圆y/x圆上点与原点连线斜率y-x的最小值斜率为1的直线与圆有交点x^2+y^2是到原点距离的平方
x2+y2 表示直线2x+y+5=0上的点与原点的距离,其最小值就是原点到直线2x+y+5=0的距离|0+0+5|4+1=5,故答案为:5.
这是一道线性规划题,首先根据线性条件画出可行域,X+Y≥2,X-Y≤2,0≤Y≤3.画出可行域后,再画出直线2x-y=0然后平移,就可求得Z的最大值和最小值,Z=2X-Y在y=3与x+y=2的交点(-
1.变形有:5-x^2=2(x-2y)所以:最大值为5/2(x^2>=0)2.会互补,因为角的两边可以无限延长,而互补角是共用两边的,想一想,画一画ok补充:不好意思,看错:1.x^2-4x+2x+4
z=3x+y=13(x+2y)/6+5(x-4y)/6当x=5,y=2时取到,z最大值17
解由(x+y)^2=1,(x-y)^2=25,知x+y=1或-1,x-y=5或-5;当x+y=1,x-y=5时,则x=3,y=-2;当x+y=1,x-y=-5时,则x=-2或y=3;当x+y=-1,x
令t=2x+y,可得y=t-2x,代入x2+y24=1,得x2+14(t-2x)2=1化简整理,得2x2-tx+14t2-1=0∵方程2x2-tx+14t2-1=0有实数根∴△=t2-4×2×(14t
∵正实数x,y,z满足2x(x+1y+1z)=yz,∴x2+x(1y+1z)=12yz,∴(x+1y)(x+1z)=x2+x((1y+1z)+1yz=12yz+1yz≥212=2.当且仅当yz=2,取
原等式两边同乘以x2+1-x,得y+y2+1=x2+1-x①原等式两边同乘以y2+1-y,得x2+1+x=y2+1-y②①+②得x+y=0.故答案为0.
解题思路:依据题意解答解题过程:最终答案:略