已知实数mnpq满足m n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:00:06
根号下大于等于0所以m-4>=0,m>=44-m>=0,m
1/m+2/n=1/m+1/(n/2)≥2/√(m*n/2)≥2/((m+n/2)/2)=4/(m+n/2)=4
假设方程:x^2+x-2009=0,因为m^2+m-2009=0,1/n^2-1/n-2009=0;所以:m,-1/n是方程x^2+x-2009=0的两个根,所以m×(-1/n)=-2009,n=m/
根据题意可知m,n分别是方程x²-x-√3=0的两个不同实数解于是m+n=1mn=-√3从而(mn)²-m-n=(-√3)²-1=3-1=2
2m^2n+4mn^2=2mn(m+2n)=2×2×8=32
k>=1pq=kmnp+q=k(m+n),存在正实数pq,等价于判别式(p-q)²=k²(m+n)²-4kmn>=0.k明显大于0,所以上式相当于k>=4mn/(m+n)
根号下大于等于0m2-4>=0,m2>=44-m2>=0,m2
由题意正实数m,n满足m<n,可知f(m)=|log2m|=-log2m,f(n)=|log2n|=log2n,因为f(m)=f(n),所以,-log2m=log2n.所以log2(nm)=0,所以m
证明:任取x1,x2∈(-n/2,正无穷大)且令x10,2x2+n>0f(x1)-f(x2)=(mx1+1)/(2x1+n)-(mx2+1)/(2x2+n)(通分)=(2mx1x2+mnx1+2x2+
mn+mn=mn(m+n)=3*5=15
m+n+p+q=22平方得[(m+n)+(p+q)]^2=22^2(m+n)^2+(p+q)^2+2(m+n)(p+q)=484m^2+n^2+p^2+q^2+2(mn+pq+np+mq)+400=4
m=n+8n(n+8)+k^2=-16n^2+8n+16+k^2=0(n+4)^2+k^2=0平方大于等于0,相加等于0,若有一个大于0,则另一个小于0,不成立所以两个都等于0所以n+4=0,k=0n
m^2+2n^2+m-4n/3+17/36=0m^2+m+1/4+2n^2-4n/3+2/9=0(m+1/2)^2+2(n^2-2n/3+1/9)=0(m+1/2)^2+2(n-1/3)^2=0满足上
即m²+2mn+n²=1m²-2mn+n²=25相减4mn=-24mn=-6m²+2mn+n²=1两边减去mnm²+mn+n
很久没玩数学了不知道对不对!
由f(m)>f(n)得:am>an.因a=(根号5-1/2)>1.所以得:m>n
N=(√(4-M²)+√(M²-4))/(M-2)由已知:4-M²≥0,M²-4≥0所以M²=4,又因M-2是分母,不能为0,所以M=-2从而N=0.
当m=n时,原式=1+1=2;当m≠n时,m、n可看作方程x2-4x-1=0的两根,则m+n=4,mn=-1,所以原式=m2+n2mn=(m+n)2-2mnmn=42-2×(-1)-1=18.故答案为
因为m-n=8,所以(m-n)^2=m^2-2mn+n^2=64(1)又mn+k^2=-16,则有4mn+4k^2=64(2)(1)+(2)得m^2+2mn+n^2+4k^2=0即:(m+n)^2+4
解析:易知N≠0当M=0时,解得:P=0当M≠0时,已知[√(M/N)]×[(√MN)+2N]=5√(MN)化为:|M|+2√(MN)=5√(MN)即|M|=3√(MN)两边平方得:M²=9