已知实二次型F(X1,X2,X3)=X1^2 4X2^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 20:34:30
f(3+x)=f(3-x),说明f(x)关于x=3对称,所以x1+x2=2*3=6
解由知点p1(x1,1994)和p2(x2,1994)关于直线x=(x1+x2)/2对称又由函数f(x)=ax^2+bx+c的对称轴为x=-b/2a即(x1+x2)/2=-b/2a即x1+x2=-b/
因为f(×1)=F(×2),因此,X1,X2上的对称轴,并且对称性X=-b/(2a)中的轴线所以有:(X1+X2)/2=-b/(2A)那么X1+X2=-b/AF(X1+X2)=B2/A-B2/A+7=
(-1/a,0 )恒有2f(x1+x2)≤f(x1)+f(x2)成立所以是一个凹函数.凹函数二次求导大于0所以a>0所以二次函数图像如图所示.ax^2+x=0x1=0x2=-1/a所以
f(2分之x1+x2)与f(x1+x2)都等于最值.即都等于(4ac-b^2)/4a.再问:还有f(x1+x2)等于多少?再答:X1+X2=-b/af(X1+X2)=a*b^2/(a^2)+b*(-b
1/2*[f(x1)+f(x2)]-f[(x1+x2)/2]=1/2*(ax1^2+ax2^2)-a[(x1+x2)/2]^2=a/4*(x1-x2)^2当a>0时1/2*[f(x1)+f(x2)]≥
条件有误吧对任意x1,x2∈Rx1<x2,且f(x1)≠f(x2),二次函数怎么可能
(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.
(1)∵f(x+2)是偶函数,故f(x+2)=f(-x-2)带入用x+2和-x-2分别替换x,因为是偶函数,则有f(x+2)=a(x+2)^2+b(x+2)+1=a(-x-2)^2-b(x+2)+1∴
这题还有点意思.二次型的矩阵A=1a1a-5b1b1由(2,1,2)^T是A的特征向量得A(2,1,2)^T=λ1(2,1,2)^T即有a+4=2λ12a+2b-5=λ1b+4=2λ1解得:a=b=2
令g(x)=f(x)-[f(x1)+f(x2)]/2g(x1)=f(x1)-[f(x1)+f(x2)]/2=[f(x1)-f(x2)]/2同理g(x2)=-[f(x1)-f(x2)]/2g(x1)*g
证明:∵f(x1)≠f(x2).不妨设f(x1)<f(x2).另设f(x1)=A1,f(x2)=A2,A=(A1+A2)/2.易知,A1<A<A2.构造函数g(x)=f(x)-A.(x1<x<x2)g
(1)由f(x+2)为偶函数可得f(x)=ax2+bx+1的图象关于直线x=2对称,则−b2a=2,b=−4a,f(x)=ax2-4ax+1;对于任意的实数x1、x2(x1≠x2),都有f(x1)+f
第一问应该是证明f(x+y)=f(x)f(y)f(x+y)=a^x+yf(x)f(y)=(a^x)(a^y)=a^x+y则f(x+y)=f(x)f(y)第二问由f(-2)=1/4得a^-2=1/4得a
【分析】根据条件,确定函数的单调性,再比较函数值的大小即可.【解答】不妨假设x1>x2>0,则x1-x2>0∵(x1-x2)(f(x1)-f(x2))>0∴f(x1)-f(x2)>0∴f(x1)>f(
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
(1)二次型的矩阵A=1t1t20101由A奇异知|A|=0.而|A|=-t^2所以t=0(2)此时A=101020101|A-λE|=-λ(λ-2)^2.所以A的特征值为λ1=0,λ2=λ3=2.对
当x2<-b/(2a)或x1>-b/(2a)时:可知f(x)在(x1,x2)内是单调的.不妨设f(x1)<f(x2),则必有f(x1)<1/2[f(x1)+f(x2)]<f(x2),因此必然存在实数m
证明:∵f(x1)≠f(x2).不妨设f(x1)<f(x2).另设f(x1)=A1,f(x2)=A2,A=(A1+A2)/2.易知,A1<A<A2.构造函数g(x)=f(x)-A.(x1<x<x2)g